[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 http://rio2016.5ch.net/test/read.cgi/math/1573769803/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
124: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/23(土) 18:28:50.78 ID:iKDSmfWl >>64 >そもそもホッジ理論とアラケロフ理論ってのは元々解析的な観点では離れた理論ではないんであって、 >望月さんは遠アーベル幾何学的な代数寄りのアプローチをしたのが当時新しかったわけで ふーん、なるほどね〜(^^ https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%83%E3%82%B8%E3%83%BB%E3%82%A2%E3%83%A9%E3%82%B1%E3%83%AD%E3%83%95%E7%90%86%E8%AB%96 ホッジ・アラケロフ理論 (抜粋) 楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。ホッジ・アラケロフ理論は、 Mochizuki (1999) で導入された。 望月の主要な結果であるホッジ・アラケロフ理論の比較定理は、(大まかには)標数 0 の滑らかな楕円曲線の普遍拡大上の次数が d 未満の多項式の空間は、自然に d-捩れ点上の函数の d2-次元空間に(制限によって)同型となるという定理である。 ド・ラームコホモロジーを複素多様体の特異コホモロジーや、p-進多様体のエタール・コホモロジーに関連付けるコホモロジー論の比較定理のアラケロフ理論の類似物である。 Mochizuki (1999) と Mochizuki (2002a)で、彼は数論的小平・スペンサー写像やガウス・マーニン接続(英語版)(Gauss-Manin connection)が、ヴォイタ予想やABC予想などに重要なヒントを与えるのではないかと指摘している。 http://rio2016.5ch.net/test/read.cgi/math/1573769803/124
178: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/26(火) 23:06:50.39 ID:oYs7jyeH >>124 >楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論 "アラケロフ理論(英語版)(Arakelov theory)"下記ですな 下記では、Faltings、Serge Lang、Mordell conjecture、Deligne、arithmetic Hodge index などなど、重要キーワード満載ですな (参考) https://en.wikipedia.org/wiki/Arakelov_theory Arakelov theory (抜粋) In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions. Contents 1 Background 2 Results 3 Arithmetic Chow groups 4 The arithmetic Riemann?Roch theorem Results Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields, in the case of number fields. Gerd Faltings (1984) extended Arakelov's work by establishing results such as a Riemann-Roch theorem, a Noether formula, a Hodge index theorem and the nonnegativity of the self-intersection of the dualizing sheaf in this context. つづく http://rio2016.5ch.net/test/read.cgi/math/1573769803/178
181: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/26(火) 23:13:42.54 ID:oYs7jyeH >>124 >楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。 (参考) https://en.wikipedia.org/wiki/P-adic_Hodge_theory p-adic Hodge theory (抜粋) The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge?Tate representation. Hodge?Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the etale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field. http://rio2016.5ch.net/test/read.cgi/math/1573769803/181
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.041s