[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
192
(3): 2019/10/07(月)08:54 ID:3bkiY8iJ(2/3) AAS
もう少し具体的に聞きましょう。
確かに順序数とは整列順序集合の同値類の完全代表系の一つであります。
まず通常のノイマンの構成による順序数全体をOrdとします。
Ordの元xに対しツェルメロ構成によるx番目の順序数をZ(x)としてこれを定めるなら、
Z(0)=0,
Z(x+1)={Z(x)}
としてx<ωまではいいでしょう。
省3
193
(4): 現代数学の系譜?雑談 ◆e.a0E5TtKE 2019/10/07(月)14:21 ID:ez50Rnmf(1/3) AAS
>191-192

>>189に関連して)
1)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成は、正則性公理に反しない
 たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
 それはいわゆる自然数Nよりも、余計な元、
省2
200: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:06 ID:rpPbPz0q(3/7) AAS
>>192
>Ordの元xに対し
>ツェルメロ構成によるx番目の順序数をZ(x)として
>これを定めるなら、
>Z(0)=0,
>Z(x+1)={Z(x)}
>としてx<ωまではいいでしょう。
省12
207
(1): 2019/10/08(火)00:39 ID:86YyLDZA(1) AAS
>>206

> (引用開始)
> じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね
> つまり、EはNに対して、真に大きい
> つまり、EはNに対して、余分な元を含む

認められるのはここまでです。

> つまり、Nは全ての有限の元を含むので、
省15
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s