[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
18
(8): 2019/10/05(土)11:14 ID:o3KPqddg(2/8) AAS
一部修正して再掲
ーωの定義ー
順序対<x,y>の定義
∀z <x,y>:⇔z=x ∨ (∀w w∈z ⇔ w=x ∨ w=y)
関数の定義
f:x→y:⇔∀z ∀a∈x ∃!b∈y <a,b>∈f
関数が単射の定義
省14
21
(1): 2019/10/05(土)11:22 ID:kZwmbLNI(9/44) AAS
>>18
>{{…{}…}}({}の多重無限)を現代数学での議論の範囲内で議論するつもりなら
>現代数学でいうところの ‘well defined’ と呼べる定義を与えて下さい。
(注:原文で‘ツェルメロ構成のω’ とあるところを
 {{…{}…}}({}の多重無限)に置き換えました)

ごもっともです。

ただ、うまく書き表せるでしょうか?私には思いつきません
省1
26
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)11:42 ID:JrhjRl4x(11/46) AAS
>>18
どうも、ガロアスレのスレ主です(^^

ああ、貴方が
現代数学はインチキのデパート
2chスレ:math
ID:4Fu/lmU2さんだったか(^^

1)もし可能なら、前スレ21とか>>18の出典 手元のテキストでもなんでも良いですが
省10
30
(2): 2019/10/05(土)11:55 ID:o3KPqddg(4/8) AAS
>>26
出展もクソも>>18の内容は数学科なら最初の2,3ヶ月目までに絶対習う内容で(順序数は微妙だけど)まさに何にでも載ってるし誰でも知ってる話だけど。
しかし俺が読んだのは確か共立出版の公理的集合論って本だったかな?
あなた掲示板だからある程度はコンセンサスとれてるとして効率的に行こうといってる。
まさにそこは正論なんだけど、だからこそ理学部数学科では自分ではコッチの方がいいかなぁと思いつつもそこは世間一般で通用してる定義を採用する。
しかしもちろんどうしてもそうでないものを採用せざるを得ない場面はあるし、その場合には必ず数学的な定定義を与えてから議論を始めないと数学にならない。
あなたのωを仮にΩと書くなら、このΩは数学の世界では全くコンセンサスは取れてません。
省2
127
(3): 2019/10/06(日)09:49 ID:Gc2q5hFd(1/4) AAS
>>110

> で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
> 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
>
> それを、最小の無限集合に絞って小さくする操作が必要です
> 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる
>
省17
196
(2): 2019/10/07(月)18:01 ID:cEmWDLJd(1/2) AAS
>  いわゆる自然数Nよりも、余計な元、
>、超限順序数に属するべき(有限でない)元が
>  生成され、含まれていることに同意しますか? Y/N
> に対して、Yだと回答されたということですね

いわゆる無限公理によって条件

0∈E、∀x (x∈E⇒x∪{x}∈E)

を満たすEの存在は認めます。
省9
205
(1): 2019/10/07(月)22:31 ID:cEmWDLJd(2/2) AAS
>>197
> それ、どこかで聞いたセリフかもね
> ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか?

そんな事はありません。
証明の全てを書く必要はありません。
そんな論文はなかなかありません。
たの論文なり教科書に載ってる結果を引用したいのなら構いません。
省7
206
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)00:10 ID:3SQHWkr4(1/5) AAS
>>205
>という形までしか許されません。私の>>18を見て下さい。

ああ、>>18をアップした人だったのかい?(^^

>たの論文なり教科書に載ってる結果を引用したいのなら構いません。

まあ、探してみるけどね
おれさ、おっちゃんみたいに、こんなバカ数学板に、ぐだぐだ記号で証明書く趣味ないんだよね
そもそもがさ、書かれた証明が初出なら、タイポとかありうるでしょ
省16
221
(1): 2019/10/09(水)12:34 ID:rFFSRADX(1) AAS
>>216
ダメですね。
まず
x: ordered number in the sence of Zermelo
が論理式として定義されていません。
>>18の定義にある通り、そここそがNeumannのordered numberのすごいところで多くの基礎論における順序数の構成でNeumannのスタイルが採用される所以です。
まぁ仮にそこがなんとかなったとしても
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s