[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
110(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)07:57 ID:d8OQiN+r(1/27) AAS
>>95 追加
>Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….)
で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
それを、最小の無限集合に絞って小さくする操作が必要です
省16
111(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)08:00 ID:d8OQiN+r(2/27) AAS
>>105
>>110をどうぞ
112(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)08:39 ID:d8OQiN+r(3/27) AAS
>>77 追加
下記、定理 93ですけど、ここに集積点を含まないことは明白ですね(^^
外部リンク:www.math.tsukuba.ac.jp
坪井明人 筑波大
外部リンク[pdf]:math.tsukuba.ac.jp
坪井明人
11 整列集合
省37
150: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)10:54 ID:d8OQiN+r(4/27) AAS
>>112 参考
先のPDFは2 学期で、下記のPDF1学期の続きだな
外部リンク:www.math.tsukuba.ac.jp
集合入門 坪井明人 筑波大
(抜粋)
1学期
1. 高校の復習など
省22
151(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)11:23 ID:d8OQiN+r(5/27) AAS
>>110 補足
>Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….)
で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
(引用終り)
省25
154(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)12:48 ID:d8OQiN+r(6/27) AAS
>>151 追加
von Neumannで、自然数Nが構成できる(下記)
無限降下列
0∈1∈2・・∈N
が出来る
無限公理によりできる集合N’には、自然数N以上の無限大の後者が含まれている
そこから、不要元をそぎ落として、自然数Nにする
省24
155(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:05 ID:d8OQiN+r(7/27) AAS
>>154 追加
さて、上記von Neumannで、自然数Nが構成できる
無限降下列
0∈1∈2・・∈N・・∈N’
とでも書きますかね
0∈1∈2・・∈N・・∈N’の部分は無限長
0∈1∈2・・∈N’の部分も無限長
省40
158: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:15 ID:d8OQiN+r(8/27) AAS
>>128
どうも、ガロアスレのスレ主です(^^
(引用開始)
>いい年してベビーメタルの大ファンで、
安達、いいタイミングでいってくれたな
(引用終り)
なるほど
省1
159(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:21 ID:d8OQiN+r(9/27) AAS
>>155 補足
>この用語が適切かどうか不明だが
>「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう
>(文学的表現では、底抜けってことですね)
そういう目で見ると
>>112 坪井明人 筑波大 11 整列集合
”定理 93 (X, <) を順序集合とする.このとき次は同値である:
省9
160(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:26 ID:d8OQiN+r(10/27) AAS
>>159 つづき
なので、正則性公理にいう
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味ですね(^^
これを、取り違えて
最小元を持つ、順序数の無限列に適用して、
「正則性公理に反する」とかは、いけませんね(^^
省9
162(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:38 ID:d8OQiN+r(11/27) AAS
>>151 補足
ツェルメロの自然数構成で
0:Φ
1:{Φ}
2:{{Φ}}
・
・
省26
163(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:42 ID:d8OQiN+r(12/27) AAS
>>161
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
その質問は、哀れな素人さんの無限に関する質問に類似
ノイマン構成が理解でていませんね
どうぞ、大学教員に質問願います
高校教員でもいいかもね(>>154 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲)
164(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:53 ID:d8OQiN+r(13/27) AAS
>>163 補足
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
(>>154より)
von Neumannで、自然数Nが構成できる(下記)
無限降下列
0∈1∈2・・∈N
ノイマン構成では、N=ωです
省28
165(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:59 ID:d8OQiN+r(14/27) AAS
>>164 追加
(参考)
現代数学はインチキだらけ より
2chスレ:math
外部リンク:ja.wikipedia.org
整礎関係
(抜粋)
省18
168(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)14:42 ID:d8OQiN+r(15/27) AAS
>>166
√5 =〜 2.2360679・・・・・ 富士山麓オーム鳴く[ふじさんろくおーむなく]
この数列の最後の数字は、0〜9のどれでしょうか?
これと類似の質問では?
外部リンク[html]:www.shinko-keirin.co.jp
数学トピックQ&A
無理数の語呂合わせ
省1
169: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)14:44 ID:d8OQiN+r(16/27) AAS
むかし、2Chと言っていた時代に
新聞だったかに、書かれていたのが
「大人だと思って書いていたら、相手は子供だった」という記述があるのを思い出しました
171(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)15:34 ID:d8OQiN+r(17/27) AAS
>>170
>数列 an には最後の項 a∞ はありません
>一方第2項 a2 はあります
これは酷い
>>165より
”(X, <) が整礎関係で x が X の元ならば、x から始まる降鎖列は必ず長さ有限だが、これはこのような降鎖の長さが有界であるということを意味しない。
以下のような例を考えよう。X は正の整数全体の成す集合に、どの整数よりも大きな 整数ではない新しい元 ω を付け加えた集合とする。
省14
173(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)15:56 ID:d8OQiN+r(18/27) AAS
>>154 追加
外部リンク:unaguna.jp
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) >
集合論の言葉による自然数の表現
(抜粋)
n の次の自然数を n∪{n} とする利点としては
省10
174: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)15:57 ID:d8OQiN+r(19/27) AAS
>>173
つづき
数学的帰納法
さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。
ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。
余談
ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。
省5
175(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:07 ID:d8OQiN+r(20/27) AAS
>>102 追加
>(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
この”for any object a, of the singleton set {a}”
は、ZFCでは、対の公理だね
a → {a}が言える
(参考)
外部リンク:ja.wikipedia.org
省19
176: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:13 ID:d8OQiN+r(21/27) AAS
>>175 補足
ツェルメロの the singleton set {a} の公理
あるいは
ZFCの対の公理より
任意のaから、{}を一つ加えた集合{a}の存在が言える
これは、当たり前のことだが、公理だから、普通に考えて、無制限(^^
正則性公理の無限降下列に反するだ〜?
省1
180(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:18 ID:d8OQiN+r(22/27) AAS
>>175
商集合は、分出公理を使うのか
外部リンク:unaguna.jp
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) > 同値関係と同値類
(抜粋)
同値類
省22
181(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:20 ID:d8OQiN+r(23/27) AAS
>>180
つづき
定義 5 (商集合).R を x 上の同値関係とする。このとき、「R による同値類がすべて属し、それ以外のモノが属さない集合」である
{y∈P(x)?∃a[a∈x∧y=[a]R]}
を商集合とよび x/R と書く。
商集合は直感的な内包的記法を使えば
{[a]⊂x?a∈x}
省14
182(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:20 ID:d8OQiN+r(24/27) AAS
>>181
つづき
数学の議論では、変数 i を含む項 T と、集合 I があるとき、i∈I に対する T 全体からなる“集合”を考える、ということがしばしばあります。
大抵の場合、i∈I のとき、T は i に無関係なある集合 A に属しているので、これを集合と見なすことは分出公理により正当化されるのですが、順序数の議論のような、集合論として“きわどい分野”での議論を行うときは、このような条件が成り立っていない場合があります。
ところで、この場合の項 T は、集合 I の元 i に対してある対象 T を表しており、i に T を対応させる関数が与えられたとみなすことができます。
そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理:
[∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )]
省7
183: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:24 ID:d8OQiN+r(25/27) AAS
>>181 補足
> さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。
> そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理:
思うに、分出公理とか置換公理を、あまり強力にして、なんでもできることにすると、
Russellのパラドクスのようなことを生じるおそれがある
だが、分出公理とか置換公理の力を制限すると、
選択公理のように、無限の集合を扱う公理を必要とするということだろうね(^^
185(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:32 ID:d8OQiN+r(26/27) AAS
>>172
>>ええ、上記いずれの場合も、第1項 a1=ω はありますよ
>私が聞いてるのは第2項ですw
質問に対して、質問を返して悪いが(^^
1)下記の、順序数の列
0, 1, 2, 3, . . . , ω を認めますか? Y/N
2)もし、Yesの場合
省14
186(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:33 ID:d8OQiN+r(27/27) AAS
>>184
>>185
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s