[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
162
(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)13:38 ID:d8OQiN+r(11/27) AAS
>>151 補足
ツェルメロの自然数構成で
0:Φ
1:{Φ}
2:{{Φ}}
 ・
 ・
n:{・・{Φ}・・} n重
これで、全ての有限の自然数は構成できる
無限公理で、Nとωが出来たあとに、
ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)
と定義すれば良い
下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」
但し、下記”順序型というアイデア”を使う
QED

外部リンク:ja.wikipedia.org
順序数
(抜粋)
次が成り立つ:
5.順序数からなる空でない集合には必ず最小元が存在する
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
注釈
^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
(引用終り)
1-
あと 840 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.012s