[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
112: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 08:39:19.54 ID:d8OQiN+r >>77 追加 下記、定理 93ですけど、ここに集積点を含まないことは明白ですね(^^ http://www.math.tsukuba.ac.jp/~tsuboi/ 坪井明人 筑波大 http://math.tsukuba.ac.jp/~tsuboi/und/set2.pdf 坪井明人 11 整列集合 定義 88(整列順序)順序集合 (X, <) が整列集合(あ るいは整列順序集合)であるとは,空でない任意の A ⊂ X の中に(A の)最小元が存在することである. 注意 89 整列集合は全順序集合である.全順序集合 であることは,2元集合 A = {x, y} に必ず最小元が 存在することからわかる. 例 90 1. (N, <) は整列集合である. 2. (Z, <) は(全順序集合であるが)整列集合でない. 3. 有限の全順序集合は整列集合になる. 関数 f : N → X は X の元からなる無限列と考えられる. 無限列は (an)n∈N などで表す. 定義 91 (X, <) を順序集合とする.X の元の無限列 (an)n∈N が無限降下列であるとは,任意の n ∈ N に対して, an+1 < an が成立することである. 例 92 1. Z における数列 (an)n∈N を an = ?n で定めると,無限降下列である. 2. N の中には無限降下列は存在しない. 定理 93 (X, <) を順序集合とする.このとき次は同値である: 1. (X, <) は整列集合である; 2. (X, <) は全順序集合で,なおかつ無限降下列を持たない. 証明: 1 ⇒ 2: (X, <) を整列集合とする.全順序 集合になることは既に調べた.X の中に無限降下 列 (an)n∈N が存在したとしよう.このとき,集合 A = {an : n ∈ N} ⊂ X は最小元を持たない.これ は X が整列集合であることに反する. 2 ⇒ 1: 2 を仮定する.空でない A ⊂ X を任意に とる.A に最小元が存在することを示そう.a0 ∈ A を選ぶ.これが A の最小元ならば議論は終了する. そうでなければ,a1 ∈ A, a1 < a0 が存在する.a1 が最小元ならば議論は終了するので,再び a2 ∈ A, a2 < a1 が存在する.以下同様に A の元 an を a0 > a1 > a2 > ・ ・ ・ an?1 > an となるように選ぶ.A は無限降下列を持たないので, この構成はいつか止まる.すなわち,ある n に対し て an ∈ A が最小元になる. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/112
113: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 08:47:43.51 ID:zyaquwkF なんだ、この馬鹿、調子ぶっこいて、新スレ立ち上げやがったんだ 飛んで火にいる夏の虫 とはこのことだwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/113
114: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 08:57:10.46 ID:zyaquwkF >>110 >無限公理でできた最小に絞る前の無限集合には、 >真に無限の{・・・{Φ}・・・}なる >無限多重カッコ{}の集合が含まれていることは >明白ですね 馬鹿が勝手な妄想してやがるwww もとの文章でいってるのは、 無限公理だと{}を含むとかxを含めば{x}を含むとかいってるだけで 余計な元を含まないという記述がないから、追加の公理で 余計な元がないようにする、ってことだろ 無限公理で必ず”無限多重カッコ{}の集合”が入るなんていえないし そういう集合は、さんざん言われてるように正則性公理に反する 馬鹿が理解できないだけwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/114
115: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:04:29.32 ID:zyaquwkF >>112 集積点? 極限順序数のことか? そんなもん別にあってもかまわんぞ 極限順序数には直前の元はない 例えばωにはωー1なんてない つまりω>nとなる元は有限 だから ω>n>n−1・・・2>1>0 なる列は必ず有限長 こんな基本的なことも理解できない馬鹿が 超限帰納法とかほざいてたとか、噴飯ものwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/115
116: 哀れな素人 [] 2019/10/06(日) 09:08:03.00 ID:aAisPx0D ID:zyaquwkF このチンピラ臭丸出しの文章はサル石だろう(笑 サル石という名前が知られ始めたので 第六天魔王と名前を変えたのだろう(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/116
117: 哀れな素人 [] 2019/10/06(日) 09:11:13.57 ID:aAisPx0D このスレの読者よ、第六天魔王とは サル石という2ch有数の噛みつき魔である(笑 よく覚えておくように(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/117
118: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:23:00.54 ID:zyaquwkF >>116-117 なんだ、安達のジジイ、まだ生きてたのか? お前みたいな耄碌爺、相手にする時間がもったいない とはいえ、せっかくだからなぜ「第六天魔王」を名乗ったのか教えてやろう 第六天魔王というのは仏教でいうところの「仏道修行を妨げている魔」だな キリスト教でいうサタンみたいなもんだ というと、なんかここの馬鹿が釈迦みたいに聞こえるが もちろん、トンデモ野郎がそんな有難いもんじゃない 昔、武田信玄が織田信長への手紙で 「天台座主沙門信玄」 とか中二病丸出しな署名をしてきやがったので 信長が面白がって、返事に 「第六天魔王信長」 と署名したとか ここではそれを丸ごと頂いたまで パクリじゃないぞ オマージュってやつだwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/118
119: 哀れな素人 [] 2019/10/06(日) 09:29:02.76 ID:aAisPx0D ↑見ろ、このアホのチンピラ臭丸出しの文章(笑 これがサル石という男である(笑 相手かまわず誰にでも噛みつく(笑 在日同和の低学歴バカだから 他人に噛みつきたくて噛みつきたくてたまらない(笑 噛みつかないと気が済まない(笑 一種の精神病者(笑 このスレの読者よ、こいつは下記スレで何年間も スレ主に噛みついている男である。下記スレを見れば分る(笑 朝から真夜中まで一日中、毎日毎日何年間も噛みついている(笑 現代数学の系譜 工学物理雑談 古典ガロア理論も読む https://rio2016.5ch.net/test/read.cgi/math/1568026331/l50 http://rio2016.5ch.net/test/read.cgi/math/1570237031/119
120: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:33:04.88 ID:zyaquwkF >>119 >相手かまわず誰にでも噛みつく いや、安達、貴様には関わらんよ さすがの俺も、認知症のジジイをいたぶるほど、悪党じゃないwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/120
121: 哀れな素人 [] 2019/10/06(日) 09:37:31.45 ID:aAisPx0D ↑こうしてアホのくせに虚勢を張る(笑 日大卒のくせにパリ高等師範学校卒とか 東大理学部数学科卒と自称していたアホである(笑 ついに噛みつき魔の本性を隠しきれなくなって、本性全開(笑 噛みつきたくて噛みつきたくてたまらない精神異常者である(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/121
122: 哀れな素人 [] 2019/10/06(日) 09:39:05.06 ID:aAisPx0D こいつがどれほど異常な男であるかというと、 たとえばこういう投稿をしている男だ。 牛は日本ではキャプティブボルト(屠畜銃)を眉間に打ち、 失神させ、片足を釣り上げて逆さ吊りにして、 喉を切り裂いて失血死させる。 失神は失敗することもあるし、 首を切られてから意識を取り戻すこともある。 これは豚も同じことだ。 首掻き切るか?なんならオレが斬ってやろうか これは単なる食肉加工 罪悪感?そんなもんないよ 失神させ、片足を釣り上げて逆さ吊りにして、 喉を切り裂いて失血死させる。 実際に人を真っ二つに斬れたら 爽快極まりないだろう http://rio2016.5ch.net/test/read.cgi/math/1570237031/122
123: 哀れな素人 [] 2019/10/06(日) 09:39:57.89 ID:aAisPx0D 二日間に渡って狂気の860連投をした男である(笑 学歴に異常な虚栄心というか劣等感を持っていて、 日大卒のくせにパリ高等師範学校卒とか 東大理学部数学科卒と自称していたアホである(笑 在日か同和で、アイヌでもないのにアイヌを自称して アイヌ特権で甘い汁を吸っている疑いがある。 50代前半だが働かずに毎日2chに貼り付いている(笑 いい年してベビーメタルの大ファンで、 乃木坂とかAKBグループのファンでもある(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/123
124: 哀れな素人 [] 2019/10/06(日) 09:42:02.70 ID:aAisPx0D サル石の好む語彙 サル、畜生、貴様、ナイーブ、idiot 肉、豚の丸焼き、サタン アイドル・ロック・ヘビメタ クロポトキン・アナーキスト・革命 ギャハハハハ!!! かっけぇぇぇぇぇ!!! ワロスwwwwwww っぷ これは酷い (^^; ちょっと何いってるのかわからないんですけど… キモチ悪い (をひ) 腐った爺頭 こういう語を使っていればサル石だ(笑 最初は、ばれないように、こういう語は使わなかったが、 もう開き直って本性全開(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/124
125: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:43:15.65 ID:zyaquwkF >>122 なに 怯えてるんだ、安達 安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな https://www.favy.jp/topics/20495 http://rio2016.5ch.net/test/read.cgi/math/1570237031/125
126: 哀れな素人 [] 2019/10/06(日) 09:47:58.58 ID:aAisPx0D >なに 怯えてるんだ、安達 アホのくせに虚勢を張る(笑 怯えているのはこいつなのに(笑 >安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない >ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな こういう文章にこの男の異常性が現れている(笑 人肉嗜食願望さえ抱いている異常者である(笑 嘘だと思うならガロアスレのこいつの過去レスを見れば分る(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/126
127: 132人目の素数さん [sage] 2019/10/06(日) 09:49:14.34 ID:Gc2q5hFd >>110 > で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど > 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki) > > それを、最小の無限集合に絞って小さくする操作が必要です > 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる > そうです。 ωの存在を公理としても良いけど公理はなるべく簡潔である方が好まれるのでそのようにしています。 そうしないといけないわけではありませんが。 具体的には例えば ω' を 0∈ω' 、n∈ω' ⇒ n+1∈ω' を満たすものに取れる。(∵無限公理) ωを ω={x∈ω' | xは有限集合かつ順序数} と置くとωは自然数全体からなる集合となる。(∵分出公理) QED. のように証明できます。 ZFはBGより対象の範囲が狭く公理も弱いのでこのような構成になります。 BGなら>>18のようにもっと直接的に行けます。 (無限公理ももっと弱く取れる) もしΩの存在も示せるというなら示してください。 それ以前にまずΩを定義して下さい。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/127
128: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:49:45.09 ID:zyaquwkF >>123 >いい年してベビーメタルの大ファンで、 安達、いいタイミングでいってくれたな 10/11にBABYMETALの3rd Album"Metal Galaxy"が出るぞ 聴きやがれw >乃木坂とかAKBグループのファンでもある 悪いが、そっちはそれほど興味ないwww 乃木坂はSU-METALの姉がいたからチェックしてただけ しかしどいつもこいつもカスばかり・・・ 但し生田絵梨花と久保史緒里は除くw BABYMETALに一番近いのは・・・ももクロかもな 少なくとも百田夏菜子のエビぞりジャンプは アイドル史に残る名パフォーマンス http://rio2016.5ch.net/test/read.cgi/math/1570237031/128
129: 哀れな素人 [] 2019/10/06(日) 09:51:55.72 ID:aAisPx0D このスレの読者よ 現代数学の系譜 工学物理雑談 古典ガロア理論も読む http://rio2016.5ch.net/test/read.cgi/math/1568026331/l50 このスレでこいつは今日も朝っぱらからスレ主に噛みついている(笑 毎朝6:30頃から真夜中まで、毎日毎日何年間もだ(笑 正真正銘の変質者である(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/129
130: ID:1lEWVa2s [sage] 2019/10/06(日) 09:52:33.52 ID:Hf8pbZj7 >>128 あれこっちかなそっちかな さてどこどこどこでしょう http://rio2016.5ch.net/test/read.cgi/math/1570237031/130
131: ID:1lEWVa2s [sage] 2019/10/06(日) 09:54:27.57 ID:Hf8pbZj7 キチガイと言われたからには第六天魔王に仲間入りしたい http://rio2016.5ch.net/test/read.cgi/math/1570237031/131
132: 哀れな素人 [] 2019/10/06(日) 09:54:48.57 ID:aAisPx0D >>128 もう開き直って本性全開(笑 これがサル石という日大卒の低学歴親父(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/132
133: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:56:39.68 ID:zyaquwkF >>127 >もしΩの存在も示せるというなら示してください。 >それ以前にまずΩを定義して下さい。 まあ、しかし、馬鹿には無理だろう なぜツェルメロの自然数構成法が放棄されたか 馬鹿には死んでも理解できまい 要するに(超限順序数への)拡張性がなかったわけだな http://rio2016.5ch.net/test/read.cgi/math/1570237031/133
134: 哀れな素人 [] 2019/10/06(日) 09:56:47.15 ID:aAisPx0D ID:Hf8pbZj7 これはサル石の自演かも(笑 とにかくやることがないから狂ったように連投する(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/134
135: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 10:00:16.99 ID:zyaquwkF >>130-131 余の小者として仕えるがよい 綽名は「ハゲネズミ」な (秀吉かよw) http://rio2016.5ch.net/test/read.cgi/math/1570237031/135
136: ID:1lEWVa2s [sage] 2019/10/06(日) 10:01:03.48 ID:qO9bhJ7s >>134 違う 2ch 嫌儲に18-20歳の荷揚げ屋の頃からいたから こういうのみると参加する癖がある。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/136
137: 哀れな素人 [] 2019/10/06(日) 10:02:22.55 ID:aAisPx0D ↑在日同和の低学歴バカ丸出し(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/137
138: ID:1lEWVa2s [sage] 2019/10/06(日) 10:02:47.34 ID:qO9bhJ7s ハゲネズミってノートに書いておく http://rio2016.5ch.net/test/read.cgi/math/1570237031/138
139: ID:1lEWVa2s [sage] 2019/10/06(日) 10:05:16.64 ID:qO9bhJ7s >>137 え。日本数学会事務局に担当者いるんですが。 しかも、フェルマー最終定理についてのスレ主だし。 素数の式も惜しいとこまできてて何通か送った。素数の性質について。 ここでは教えれない 知りたければ日本数学会事務局に行って 梅田悠祐君の手紙を読ませて頂けますかと言えばいい。 日本数学会事務局にも姫はいるからセクハラ行為するなよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/139
140: 哀れな素人 [] 2019/10/06(日) 10:16:24.65 ID:aAisPx0D >>137は>>135へのレス(笑 お前へのレスではない(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/140
141: 哀れな素人 [] 2019/10/06(日) 10:32:16.77 ID:aAisPx0D このスレのまともな読者へ このサル石というバカは知ったかぶりして知識を衒っているが、 こいつがどれほどのバカかというと、 ケーキを半分に切って食べるという行為を繰り返せば ケーキを食べ尽くすことができるか否か、 という問いに対して、自信満々に何度もこう答え続けた(笑 ケーキを食べ尽くすことができる。 1/2+1/4+1/8……は1になる。 半分のケーキを一瞬で食べれば 一秒後にはケーキは無くなっている。 1/2のケーキを1/2秒で、1/4のケーキを1/4秒で…… 食べれば1秒後にはケーキは無くなっている。 最初の量が1だから1になる。 こういう度し難いアホである(笑 そのことをよく覚えておくように(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/141
142: ID:1lEWVa2s [sage] 2019/10/06(日) 10:33:53.35 ID:r/6QhAbY 私が守る対象と範囲は馬鹿と牛さん🐮達だけだ。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/142
143: 哀れな素人 [] 2019/10/06(日) 10:36:38.39 ID:aAisPx0D ↓これもサル石のアホレス(笑 >無限集合は、0から1ずつ増やすのとは別の方法で実現される。 >nは∞にならないが、nを完了させることができる。 >0.99999……は最初から無限桁あるから、9を増やす必要はない。 その他、こいつのアホレスを数えれば限がない(笑 ま、ωなどを論じている時点で、 このスレの人間は全員がアホであるが(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/143
144: ID:1lEWVa2s [sage] 2019/10/06(日) 10:42:54.64 ID:r/6QhAbY 数学の基礎って本にωこれ出てきてそっ閉じした 恐らく正しいこと言ってるし 著者がインドの直感数学をつねってたから ちゃんと奇抜な数学から元に戻して貰えるはず。 ただ、これは論理学や集合論だから 全ていっきに分かってしまう恐れがある。 手を出しちゃいけない。 著者も望んでいない。数学で逝ってしまうなんて。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/144
145: ID:1lEWVa2s [sage] 2019/10/06(日) 10:43:08.39 ID:r/6QhAbY 昭和の本 http://rio2016.5ch.net/test/read.cgi/math/1570237031/145
146: ID:1lEWVa2s [sage] 2019/10/06(日) 10:45:07.84 ID:r/6QhAbY >>144 数学で逝く人は沢山居る。 望月新一とか。さんね。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/146
147: ID:1lEWVa2s [sage] 2019/10/06(日) 10:45:50.72 ID:r/6QhAbY バイバイアルネー望月新一さん。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/147
148: ID:1lEWVa2s [sage] 2019/10/06(日) 10:50:03.30 ID:r/6QhAbY ユークリッド原論も命題1-1以上いけない。 あんなん人間にできる技じゃないよ。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/148
149: ID:1lEWVa2s [sage] 2019/10/06(日) 10:52:06.35 ID:r/6QhAbY ユークリッド原論 聖書の次に読まれた本 聖書が一番多い だから二番目 昔のスタンフォード大学では1-7以上いけなかったらしい。 それで何か名前が付いたと言っていた http://rio2016.5ch.net/test/read.cgi/math/1570237031/149
150: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 10:54:12.47 ID:d8OQiN+r >>112 参考 先のPDFは2 学期で、下記のPDF1学期の続きだな http://www.math.tsukuba.ac.jp/~tsuboi/und/set1 集合入門 坪井明人 筑波大 (抜粋) 1学期 1. 高校の復習など 2. ベキ集合,直積集合 3. 2項関係その1(同値関係,同値類,分割) 4. 2項関係その2(擬順序,順序) 5. 関数その1 6. 関数その2 7. 全順序集合 8. 数の構成その1(N から Z を構成する) 9. 数の構成その2(Z から Q を構成する) 10. 数の構成その3(時間があれば Q から R の 構成) 2 学期 1. 整列集合,辞書式順序 2. 超限帰納法 3. 選択公理 4. Zorn の補題 5. 整列可能性定理 6. ベルンシュタインの定理 7. 可算集合 8. 対角線論法 9. 集合の大きさと濃度 以上が2学期間で講義するおおまかな内容を列挙し たものである. http://rio2016.5ch.net/test/read.cgi/math/1570237031/150
151: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 11:23:00.82 ID:d8OQiN+r >>110 補足 >Infinity >This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. > (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….) で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki) (引用終り) ツェルメロ構成で、aの後者関数:suc(a) := {a} なので 上記、set a に対して set {a}が必ず属するという、無限公理の規定の仕方をしているのかな? (原典まで確認していないが) ノイマン流では、で、aの後者関数:suc(a) := a∪{a} なので この場合の無限公理は、set a に対して a∪{a}が必ず属すると規定される まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない だから、あとから不要なもの(後者)を排除するしかない では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 自然数 以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 ・ ・ と非常に単純な自然数になる。 https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 (抜粋) 定義 ZF公理系における公式な定義は次の通りである。 空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する: ∃A(Φ∈A∧∀x∈A(x∪{x}∈A)) http://rio2016.5ch.net/test/read.cgi/math/1570237031/151
152: 132人目の素数さん [sage] 2019/10/06(日) 11:34:36.37 ID:1g2Hn04k >>151 > では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて > だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの > ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね > 違いますよ。もし n+1:={n} と定義した場合は無限公理が保証してくれる無限集合をω'とした時、これは n∈ω'⇒n+1∈ω' を満たしていないからさらに議論が難しくなります。 それでも自然数全体を定義し、存在する事を証明する事はできますが、しかしそれはあくまで{0,1,2,‥‥}であって、あなたの求めるΩではありません。 証明をがどうこう考える以前にそもそもΩとは何かが定義されてないのに、それが存在する証明ができるはずありません。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/152
153: 132人目の素数さん [] 2019/10/06(日) 11:52:13.47 ID:9PvOfF3Z >>151 >まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな >このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない >だから、あとから不要なもの(後者)を排除するしかない >では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて >だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの >ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね これは酷い http://rio2016.5ch.net/test/read.cgi/math/1570237031/153
154: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 12:48:48.24 ID:d8OQiN+r >>151 追加 von Neumannで、自然数Nが構成できる(下記) 無限降下列 0∈1∈2・・∈N が出来る 無限公理によりできる集合N’には、自然数N以上の無限大の後者が含まれている そこから、不要元をそぎ落として、自然数Nにする 集合N’が、正則性公理に反するだと?(゜ロ゜; (参考) https://hc3.seikyou.ne.jp/home/Tetu.Makino/suu_no_taikei.pdf 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲 (山口大学工学部教授)2014 年 6 月 22 日 (抜粋) P3 1.3 自然数系の(本質的)一意性 自然数系の標準的な代表として用いることにして,これを N と記す。 他の自然数系はみな,N に同型である。 P4 集合論から自然数系を構成する方法としては, von Neumann の方法が知られている。 これは, 0 := Φ(空集合), 1 := {Φ}, 2 := {Φ, {Φ}}, ・ ・ ・ , s(n) := {0, 1, 2, ・ ・ ・ , n}, ・ ・ ・ とする。 また,Zermero の方法は, 0 := Φ, 1 := {Φ}, 2 := {{Φ}}, ・ ・ ・ , s(n) = {n}, ・ ・ ・ とする。 前者では,たとえば,3 ∈ 5 であるが, 後者では 3 not∈ 5 となり, 同じではないが, どちらが優れているとも云いがたい。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/154
155: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:05:38.30 ID:d8OQiN+r >>154 追加 さて、上記von Neumannで、自然数Nが構成できる 無限降下列 0∈1∈2・・∈N・・∈N’ とでも書きますかね 0∈1∈2・・∈N・・∈N’の部分は無限長 0∈1∈2・・∈N’の部分も無限長 上段が、正則性公理でだめなら 下段も、正則性公理でだめ(^^ そもそも、順序数は無限なのだから、正則性公理で規制されるものではない ところで、下記の「濃度と順序数 fujidig」では ”無限強単調減少列 x0 > x1 > x2 > . . . ” という用語を使っています(^^ この用語が適切かどうか不明だが 「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう (文学的表現では、底抜けってことですね) 一方、順序数での数列には、必ず最小元を持つ。それが、無限列であっても 正則性公理で禁止しているのは、明らかに、底抜けの最小元を持たない無限単調減少列です 最小元を持つ、上昇する無限列を禁止するものではない!(^^ https://fujidig.github.io/ でぃぐのページ ハンドルネーム: fujidig https://fujidig.github.io/201606-cardinal/201606-cardinal.pdf 濃度と順序数 fujidig June 21, 2016 (抜粋) P15 順序数というのは自然数が持つ「番号を振る」という目的を無限方向に拡張したものだといえる. P16 ・整列集合 N の型は ω と書かれる.これは最小の無限順序数である. ・順序数を小さい方から順に並べると 0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω2, ω2 + 1, . . . となる ・今並べたのは順序数のうちほんの小さい部分にすぎない.もっと大きい順序数がまだまだある P17 命題 4 整列集合 X から無限強単調減少列 x0 > x1 > x2 > . . . はとれない. 証明. x0 > x1 > x2 > . . . がとれると仮定する. すると X の部分集合 {x0, x1, x2, . . . } には最小元がないため整列性に反する. P18 命題 5 順序集合 X ≠ Φ が整列集合であるために は,全順序集合であって無限強単調減少列 x0 > x1 > x2 > . . . がとれないことが 必要十分. http://rio2016.5ch.net/test/read.cgi/math/1570237031/155
156: 132人目の素数さん [] 2019/10/06(日) 13:12:10.67 ID:9PvOfF3Z >>154 これは酷い http://rio2016.5ch.net/test/read.cgi/math/1570237031/156
157: 132人目の素数さん [] 2019/10/06(日) 13:12:53.23 ID:9PvOfF3Z >>155 これは酷い http://rio2016.5ch.net/test/read.cgi/math/1570237031/157
158: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:15:33.50 ID:d8OQiN+r >>128 どうも、ガロアスレのスレ主です(^^ (引用開始) >いい年してベビーメタルの大ファンで、 安達、いいタイミングでいってくれたな (引用終り) なるほど おサルさんか(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/158
159: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:21:36.72 ID:d8OQiN+r >>155 補足 >この用語が適切かどうか不明だが >「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう >(文学的表現では、底抜けってことですね) そういう目で見ると >>112 坪井明人 筑波大 11 整列集合 ”定理 93 (X, <) を順序集合とする.このとき次は同値である: 1. (X, <) は整列集合である; 2. (X, <) は全順序集合で,なおかつ無限降下列を持たない.” の証明を読むと、明らかに、無限降下列=底抜けの最小元を持たない無限単調減少列の意味ですね もちろん、>>155 「濃度と順序数 fujidig」さんのP17 命題 4 ”整列集合 X から無限強単調減少列”もこの意味 証明で ”x0 > x1 > x2 > . . . がとれると仮定する. すると X の部分集合 {x0, x1, x2, . . . } には最小元がないため整列性に反する.”と書いてありますからね(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/159
160: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:26:06.86 ID:d8OQiN+r >>159 つづき なので、正則性公理にいう ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味ですね(^^ これを、取り違えて 最小元を持つ、順序数の無限列に適用して、 「正則性公理に反する」とかは、いけませんね(^^ (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) 以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。 ・任意の空でない集合xに対して、∃y∈x,x∩y=0 ・∀xについて、∈がx上well-founded ・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/160
161: 132人目の素数さん [] 2019/10/06(日) 13:29:03.29 ID:9PvOfF3Z ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい http://rio2016.5ch.net/test/read.cgi/math/1570237031/161
162: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:38:42.40 ID:d8OQiN+r >>151 補足 ツェルメロの自然数構成で 0:Φ 1:{Φ} 2:{{Φ}} ・ ・ n:{・・{Φ}・・} n重 これで、全ての有限の自然数は構成できる 無限公理で、Nとωが出来たあとに、 ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う) と定義すれば良い 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 但し、下記”順序型というアイデア”を使う QED https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 次が成り立つ: 5.順序数からなる空でない集合には必ず最小元が存在する 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 注釈 ^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。 その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。 ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。 したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。 これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。 だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。 ただし、整列集合の順序型と順序数は別のものになる。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/162
163: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:42:28.53 ID:d8OQiN+r >>161 >ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい その質問は、哀れな素人さんの無限に関する質問に類似 ノイマン構成が理解でていませんね どうぞ、大学教員に質問願います 高校教員でもいいかもね(>>154 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲) http://rio2016.5ch.net/test/read.cgi/math/1570237031/163
164: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:53:05.04 ID:d8OQiN+r >>163 補足 >ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい (>>154より) von Neumannで、自然数Nが構成できる(下記) 無限降下列 0∈1∈2・・∈N ノイマン構成では、N=ωです ωが、極限順序数で、位相的に集積点(極限点)であり、任意の近傍が S の点を無限に含むということを、ご理解ください 特に、”任意の近傍が S の点を無限に含む”が理解できないのかな? (参考) https://hc3.seikyou.ne.jp/home/Tetu.Makino/suu_no_taikei.pdf 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲 (山口大学工学部教授)2014 年 6 月 22 日 (抜粋) P4 集合論から自然数系を構成する方法としては, von Neumann の方法が知られている。 これは, 0 := Φ(空集合), 1 := {Φ}, 2 := {Φ, {Φ}}, ・ ・ ・ , s(n) := {0, 1, 2, ・ ・ ・ , n}, ・ ・ ・ https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 (抜粋) 任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。 ・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。 https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9 集積点/極限点 (抜粋) 定義 位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である https://ja.wikipedia.org/wiki/T1%E7%A9%BA%E9%96%93 T1空間 (抜粋) X が T1-空間であるとは、X の任意の相異なる二点が分離できるときに言う (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/164
165: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:59:06.45 ID:d8OQiN+r >>164 追加 (参考) 現代数学はインチキだらけ より https://rio2016.5ch.net/test/read.cgi/math/1567930973/882- https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82 整礎関係 (抜粋) その他の性質 (X, <) が整礎関係で x が X の元ならば、x から始まる降鎖列は必ず長さ有限だが、これはこのような降鎖の長さが有界であるということを意味しない。 以下のような例を考えよう。X は正の整数全体の成す集合に、どの整数よりも大きな 整数ではない新しい元 ω を付け加えた集合とする。 このとき X は整礎だが、ω から始まる長さ有限の降鎖列でいくらでも長いものが取れる。なんとなれば、任意の正整数 n に対して ω, n - 1, n - 2, ..., 2, 1 という鎖は長さ n を持つ。 モストウスキーの崩壊補題 (Mostowski collapse lemma) によれば、集合要素関係 (set membership) は普遍的な整礎関係である。つまり、クラス X 上の集合的な整礎関係 R に対し、クラス C が存在して、(X, R) が (C, ∈) に同型となる。 (引用終り) (英語版) https://en.wikipedia.org/wiki/Well-founded_relation Well-founded relation (抜粋) Other properties If (X, <) is a well-founded relation and x is an element of X, then the descending chains starting at x are all finite, but this does not mean that their lengths are necessarily bounded. Consider the following example: Let X be the union of the positive integers and a new element ω, which is bigger than any integer. Then X is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain ω, n - 1, n - 2, ..., 2, 1 has length n for any n. The Mostowski collapse lemma implies that set membership is a universal among the extensional well-founded relations: for any set-like well-founded relation R on a class X which is extensional, there exists a class C such that (X, R) is isomorphic to (C, ∈). (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/165
166: 132人目の素数さん [] 2019/10/06(日) 14:06:26.50 ID:9PvOfF3Z >>164 質問は「ωの次の項は何か?」です 講釈は要らないので単純に端的にωの次の項を答えて下さい http://rio2016.5ch.net/test/read.cgi/math/1570237031/166
167: 132人目の素数さん [] 2019/10/06(日) 14:13:31.28 ID:9PvOfF3Z >>163 ωから始まる∈無限降下列が存在すると主張しているのはあなたですから、質問に答えるべきもあなたです 答えられないからといって教員に聞けとか変なこと言わないで下さいね http://rio2016.5ch.net/test/read.cgi/math/1570237031/167
168: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 14:42:39.60 ID:d8OQiN+r >>166 √5 =〜 2.2360679・・・・・ 富士山麓オーム鳴く[ふじさんろくおーむなく] この数列の最後の数字は、0〜9のどれでしょうか? これと類似の質問では? https://www.shinko-keirin.co.jp/keirinkan/kosu/mathematics/qanda/01-09.html 数学トピックQ&A 無理数の語呂合わせ √5 =〜 2.2360679・・・・・ 富士山麓オーム鳴く[ふじさんろくおーむなく] http://rio2016.5ch.net/test/read.cgi/math/1570237031/168
169: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 14:44:12.72 ID:d8OQiN+r むかし、2Chと言っていた時代に 新聞だったかに、書かれていたのが 「大人だと思って書いていたら、相手は子供だった」という記述があるのを思い出しました http://rio2016.5ch.net/test/read.cgi/math/1570237031/169
170: 132人目の素数さん [] 2019/10/06(日) 14:58:43.61 ID:9PvOfF3Z >>168 これは酷い 数列 an には最後の項 a∞ はありません 一方第2項 a2 はあります あなた基本的なことが全く分かってないですね http://rio2016.5ch.net/test/read.cgi/math/1570237031/170
171: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 15:34:34.04 ID:d8OQiN+r >>170 >数列 an には最後の項 a∞ はありません >一方第2項 a2 はあります これは酷い >>165より ”(X, <) が整礎関係で x が X の元ならば、x から始まる降鎖列は必ず長さ有限だが、これはこのような降鎖の長さが有界であるということを意味しない。 以下のような例を考えよう。X は正の整数全体の成す集合に、どの整数よりも大きな 整数ではない新しい元 ω を付け加えた集合とする。 このとき X は整礎だが、ω から始まる長さ有限の降鎖列でいくらでも長いものが取れる。なんとなれば、任意の正整数 n に対して ω, n - 1, n - 2, ..., 2, 1 という鎖は長さ n を持つ。” 意味分かりますか? >>164より (>>154より) von Neumannで、自然数Nが構成できる(下記) 無限降下列 0∈1∈2・・∈N ノイマン構成では、N=ωです ωが、極限順序数で、位相的に集積点(極限点)であり、任意の近傍が S の点を無限に含むということを、ご理解ください 特に、”任意の近傍が S の点を無限に含む”が理解できないのかな? 意味分かりますか? ええ、上記いずれの場合も、第1項 a1=ω はありますよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/171
172: 132人目の素数さん [] 2019/10/06(日) 15:41:09.34 ID:9PvOfF3Z >>171 単純に端的に第2項だけ答えて下さい 講釈は結構だと言ったはずですよ? >ええ、上記いずれの場合も、第1項 a1=ω はありますよ 私が聞いてるのは第2項ですw http://rio2016.5ch.net/test/read.cgi/math/1570237031/172
173: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 15:56:48.05 ID:d8OQiN+r >>154 追加 https://unaguna.jp/article/archives/15 U-naguna シリーズ: 集合論の言葉を使おう (準備編) > 集合論の言葉による自然数の表現 (抜粋) n の次の自然数を n∪{n} とする利点としては ・自然数 n に属するモノの個数は n となる ・自然数の大小関係 n<m が n∈m に一致する ことが挙げられる。1つ目の方は後の記事で「個数とは何か」や「個数を数える (counting) とは何か」を定義する際に役立つ (今までなんとなく個数を数えてきたが、集合論の言葉でもう少しかっちりと定義することができる)。2つ目の方は、大小関係が集合論の記号だけで簡潔に表せるようになるという点で良い。 すべての自然数が属する集合 公理 2 (無限公理). 略 すなわち、「すべての自然数が属する集合」が存在する。 ここで注意すべきは、この公理で存在が証明されるのは「すべての自然数が属する集合」であって、「すべての自然数が属して、それ以外のモノが属さない集合」ではない。あくまで「すべての自然数が属する集合」が1つは存在すると言っているのである。 以降では「すべての自然数が属して、それ以外のモノが属さない集合」を「自然数集合」と呼び ω と書くことにする (文脈によっては N で表すことも多いだろう)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/173
174: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 15:57:33.13 ID:d8OQiN+r >>173 つづき 数学的帰納法 さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。 ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。 余談 ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。 1∈3 高校数学の知識では「3は集合ではないので ∈ の右側に 3 を書くのはおかしい」となるのであろうが、我々が採用した「すべてのモノは集合である」論理では 3 も集合として定義しているのでその指摘は当たらない。 しかも、3 は {0,1,2} (0と1と2だけが属する集合) と定義されているので 1∈3 (1は3に属する) は正しい。 この点で微妙に高校数学の集合論と公理的集合論 (とりわけ ZF 公理系や ZFC 公理系を採用する集合論) には違いがある。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/174
175: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 16:07:45.71 ID:d8OQiN+r >>102 追加 >(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and この”for any object a, of the singleton set {a}” は、ZFCでは、対の公理だね a → {a}が言える (参考) https://ja.wikipedia.org/wiki/%E5%AF%BE%E3%81%AE%E5%85%AC%E7%90%86 対の公理 (抜粋) 性質 外延性の公理により、任意のx,yに対しその対が一意に定まる。その集合のことを{x,y}と記す。 また同じく外延性より、x=yの場合における対{x,x}は一元集合{x}に等しいので、単集合の存在も導くことができる。 他の公理との関係 対の公理はZF公理系の他の公理と独立ではない。すなわち、置換公理および「濃度が2以上の集合の存在」から、任意のx,yに対する対{x,y}の存在を導ける(濃度が2以上の集合の存在については、無限公理、あるいは空集合の公理と冪集合の公理の組み合わせから導くことができる)。 そのため対の公理は、公理系を記述する際に省略されることもある。 https://unaguna.jp/article/archives/14 シリーズ: 集合論の言葉を使おう (準備編) > 外延的記法 (対の公理と和集合の公理) 対の公理 公理 1 (対の公理). ∀x∀y∃z∀w[w∈z←→w=x∨w=y] すなわち、いかなるモノ (集合) x, y についても、「x と y だけが属する集合」が存在する。 まさに書いてあるとおりで、この対の公理によって上で挙げた「1と2だけが属する集合」が存在するのである。この対の公理を使うことで、2つのモノ (集合) だけが属する集合はひととおり存在が証明される。 また、1つのモノ (集合) だけが属する集合の存在も対の公理から証明できる。というのも、対の公理では x と y が同じでないことは要求してないので、たとえば「3と3だけが属する集合」である {3,3} も対の公理により存在する。 そしてこの {3,3} と「3だけが属する集合」である {3} を比較すると、3が両方の集合に属していてそれ以外のモノはいずれにも属していないので、どちらか一方にしか属していないモノは存在しない。 よって外延性の公理より {3,3} と {3} は同じ集合である。 したがって、対の公理により {3,3} の存在が示されるということは、{3} の存在が示されるということと同義である。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/175
176: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 16:13:20.37 ID:d8OQiN+r >>175 補足 ツェルメロの the singleton set {a} の公理 あるいは ZFCの対の公理より 任意のaから、{}を一つ加えた集合{a}の存在が言える これは、当たり前のことだが、公理だから、普通に考えて、無制限(^^ 正則性公理の無限降下列に反するだ〜? 無限降下列の意味を取り違えているでしょ!(>>160より) http://rio2016.5ch.net/test/read.cgi/math/1570237031/176
177: 132人目の素数さん [] 2019/10/06(日) 16:32:18.72 ID:9PvOfF3Z 思った通り逃げましたねw いいですよ?逃げても その代わり「ωから始まる∈無限降下列の存在」は間違いだったと認めて下さいね 第2項は答えないが間違いも認めない は駄々っ子のすることです 幼稚園からやり直しますか? http://rio2016.5ch.net/test/read.cgi/math/1570237031/177
178: 132人目の素数さん [sage] 2019/10/06(日) 18:31:31.23 ID:Gc2q5hFd >>162 > >>151 補足 > ツェルメロの自然数構成で > 0:Φ > 1:{Φ} > 2:{{Φ}} > ・ > ・ > n:{・・{Φ}・・} n重 > これで、全ての有限の自然数は構成できる > 無限公理で、Nとωが出来たあとに、 > ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う) > と定義すれば良い > 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 > 但し、下記”順序型というアイデア”を使う > QED と定義すれば良いって定義になってないでしょ? この場合 X∈Ω と同値であるXについての条件を書き下さねばなりません。 それはなんですか? アイデアがあるならそれに従って定義を書き下してください。このアイデアにそってやればできるなんて証明は通用しません。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/178
179: 132人目の素数さん [] 2019/10/06(日) 19:15:09.85 ID:9PvOfF3Z > ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う) ↑ 自分で何言ってるか分かってる? http://rio2016.5ch.net/test/read.cgi/math/1570237031/179
180: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:18:43.44 ID:d8OQiN+r >>175 商集合は、分出公理を使うのか https://unaguna.jp/article/archives/25 U-naguna シリーズ: 集合論の言葉を使おう (準備編) > 同値関係と同値類 (抜粋) 同値類 例として「偶奇という点で同じ」ことを表す同値関係を定義しよう。その場合たとえば M={?x,y?∈ω×ω?∃z∃w[x+2z=y+2w]} と定義すればよい ( この定義の下では xMy であることと、x+2z=y+2w を満たす自然数 z, w が存在すること (x と y が2の倍数加算の違いを除いて一致すること) が一致する。 定理 2.上で定義した関係 M は同値関係である。 M の定義文の中の 2 の部分を他の非零自然数 n に変えることで「n で割った時の余りという点で同じ」ことを表す関係も作れる。自然数同士のそのような関係は n を法とする合同関係と呼ばれる。 2 の部分を 0 にすると、aMb と a=b が一致するので、通常の「等しい・同じ」を表す関係になる。 同値類 同値類は同値関係 R によって同じと見なされるモノだけがすべて属する集合である。例えば上で例示した ω 上の同値関係 M の同値類を考えると Mo={1,3,5,7,9,…} Me={0,2,4,6,8,…} という二つの同値類がある。たとえば 1M3 だから 1 と 3 は同じ同値類に属し、2M3 ではないから 2 と 3 は異なる同値類に属する。 同値類は、それに属する1つの元を用いて表すことができる。R を x 上の同値関係としたとき、「a と同値なモノがすべて属し、そうでないモノは属さない集合」である {y∈x?yRa} は a の同値類と呼ばれ、[a] や [a]R と書く。 例えば上の Mo は「1が属する同値類」という意味で [1] とも表現する。 1が属する同値類と3が属する同値類は同じ Mo を指しているので [1]=[3] である。 この例の 1 や 3 のように同値類に属するモノのうち同値類の表現に使われたモノをその同値類の代表元とよぶ。 原則としてどのモノを代表元に選んでもよい。 商集合 商集合は、同値関係 R による同値類だけがすべて属する集合のことである。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/180
181: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:20:14.94 ID:d8OQiN+r >>180 つづき 定義 5 (商集合).R を x 上の同値関係とする。このとき、「R による同値類がすべて属し、それ以外のモノが属さない集合」である {y∈P(x)?∃a[a∈x∧y=[a]R]} を商集合とよび x/R と書く。 商集合は直感的な内包的記法を使えば {[a]⊂x?a∈x} とも書けるだろう。こう書くほうがどのような集合かわかりやすいかもしれない (分出公理によって存在が保障されることはわかりにくいが)。 上で例示した ω 上の同値関係 M について考えると、その同値類は Mo と Me の2つであったので、商集合は ω/M={Mo,Me} となる。適当に代表元を定めて ω/M={[0],[1]} とも書ける。 http://home.p07.itscom.net/strmdrf/basic_com2.htm 数学の基礎 19.素朴集合論とZF集合論 さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。 そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理: ∀a ∃b ∀x [ x∈b U ( x∈a ∧ P ) ] を仮定しよう、という考え方があります。このような集合 b は、外延性公理により唯一つであることが証明できますから、これを { x∈a | P } と書きます。なお、ここで素直に「仮定します」と言わなかったのは、次のような、別の場面で必要となる公理があり、この分出公理はそこから導出できるからです。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/181
182: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:20:45.85 ID:d8OQiN+r >>181 つづき 数学の議論では、変数 i を含む項 T と、集合 I があるとき、i∈I に対する T 全体からなる“集合”を考える、ということがしばしばあります。 大抵の場合、i∈I のとき、T は i に無関係なある集合 A に属しているので、これを集合と見なすことは分出公理により正当化されるのですが、順序数の議論のような、集合論として“きわどい分野”での議論を行うときは、このような条件が成り立っていない場合があります。 ところで、この場合の項 T は、集合 I の元 i に対してある対象 T を表しており、i に T を対応させる関数が与えられたとみなすことができます。 そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理: [∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )] を仮定します。 この公理は一見わかりにくい形をしていますが、左辺の ∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) というのは、x と y に関する関係 P(x, y) が一価関係であるということ、言い換えると、与えられた x に対して P(x, y) を満たす y を対応させる対応が x の関数になっていることを意味します。 従って、上の置換公理の述べるところは、一価関係 P が表す関数による集合 a の像となる集合が存在する、ということを意味しています。このような集合 b は、外延性公理により唯一つであることが証明できます。 さて、この置換公理を仮定すると、変数 y を含まない任意の命題 R に対して R ∧ x = y という命題を P(x, y) と書けば、これは明らかに一価関係です。 ゆえに、置換公理によって ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ R ∧ x = y ) ] すなわち ∀a ∃b ∀x [ x∈b ⇔ ( x∈a ∧ R ) ] となって、これは分出公理に他なりません。すなわち分出公理は置換公理から導出できるのです。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/182
183: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:24:47.04 ID:d8OQiN+r >>181 補足 > さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。 > そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理: 思うに、分出公理とか置換公理を、あまり強力にして、なんでもできることにすると、 Russellのパラドクスのようなことを生じるおそれがある だが、分出公理とか置換公理の力を制限すると、 選択公理のように、無限の集合を扱う公理を必要とするということだろうね(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/183
184: 132人目の素数さん [sage] 2019/10/06(日) 20:30:12.60 ID:Gc2q5hFd >>182 以上ってまさかこれで>>162の証明の不足部分が補えたという意味? ではないよね? http://rio2016.5ch.net/test/read.cgi/math/1570237031/184
185: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:32:21.54 ID:d8OQiN+r >>172 >>ええ、上記いずれの場合も、第1項 a1=ω はありますよ >私が聞いてるのは第2項ですw 質問に対して、質問を返して悪いが(^^ 1)下記の、順序数の列 0, 1, 2, 3, . . . , ω を認めますか? Y/N 2)もし、Yesの場合 0, 1, 2, 3, . . . , ω で、ωの一つ左の順序数は、何ですか? あなた、答えられますか?w 3) もし、Noの場合、現代数学の無限の概念を認めないということですか? Y/N (参考) https://fujidig.github.io/201606-cardinal/201606-cardinal.pdf 濃度と順序数 fujidig June 21, 2016 (抜粋) P15 順序数というのは自然数が持つ「番号を振る」という目的を無限方向に拡張したものだといえる. P16 ・整列集合 N の型は ω と書かれる.これは最小の無限順序数である. ・順序数を小さい方から順に並べると 0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω2, ω2 + 1, . . . となる ・今並べたのは順序数のうちほんの小さい部分にすぎない.もっと大きい順序数がまだまだある http://rio2016.5ch.net/test/read.cgi/math/1570237031/185
186: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 20:33:41.49 ID:d8OQiN+r >>184 >>185 http://rio2016.5ch.net/test/read.cgi/math/1570237031/186
187: 132人目の素数さん [sage] 2019/10/06(日) 20:41:51.10 ID:Gc2q5hFd >>186 え?>>185がなんですか? >>162の証明の不足部分はまだ一つも埋められてませんよ? http://rio2016.5ch.net/test/read.cgi/math/1570237031/187
188: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 06:00:05.83 ID:2lTTrhZd >>187 ええ、どうぞ、>>185にお答え下さい それに合わせて、>>162の補足説明を、させて頂きます それまでは、質問者には、常に>>185の逆質問があることを、ご了承ください http://rio2016.5ch.net/test/read.cgi/math/1570237031/188
189: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 06:37:17.06 ID:2lTTrhZd まとめます 1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、 ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味です ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです (>>159-160ご参照) 2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する このとき、無限公理を適用しただけでは、 我々の必要とする自然数N(全ての有限nたちのみを含む集合)より大きな集合が出来てしまう それを、自然数Nに絞り込む操作を必要とする つまり、無限公理により、全ての有限nたちを超える元が出来てしまう そのような元たちは、1)で述べたように、正則性公理に反しないのです (>>110-112) 3)ツェルメロ構成では、aの後者関数;suc(a) := {a} なので この自然数構成で、全ての有限nたちを超える元が出来てしまう そのような元たちを絞って、N={Φ, {Φ}, {{Φ}}, …}と、自然数の集合Nができる そこで、全ての有限nたちを超える元たちの中で、最小の元が、ツェルメロ構成でのωに相当します(定義) (>>110>>151) 4)ところで、正式な順序数ωの定義は、本来は、下記”整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法”による ノイマン構成では、この定義がそのまま適用できる ツェルメロ構成では、下記”順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる”ので その方法により、ωを定義した上で、3)のツェルメロ構成でのωを再定義すれば良い QED (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 定義 整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって 略 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/189
190: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 06:37:39.24 ID:2lTTrhZd >>189 つづき 注釈 ^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。 その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。 ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。 したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。 これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。 だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。 ただし、整列集合の順序型と順序数は別のものになる。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/190
191: 132人目の素数さん [sage] 2019/10/07(月) 08:34:01.82 ID:3bkiY8iJ >>189-190 全く証明になってないですね。 結局Ωは何になるんですか? http://rio2016.5ch.net/test/read.cgi/math/1570237031/191
192: 132人目の素数さん [sage] 2019/10/07(月) 08:54:36.76 ID:3bkiY8iJ もう少し具体的に聞きましょう。 確かに順序数とは整列順序集合の同値類の完全代表系の一つであります。 まず通常のノイマンの構成による順序数全体をOrdとします。 Ordの元xに対しツェルメロ構成によるx番目の順序数をZ(x)としてこれを定めるなら、 Z(0)=0, Z(x+1)={Z(x)} としてx<ωまではいいでしょう。 問題はx=ωのとき、すなわちΩ=Z(ω)の定義です。 これはどうするんですか? これを定めないと超限帰納法は完成しませんよ? http://rio2016.5ch.net/test/read.cgi/math/1570237031/192
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 810 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s