[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む74 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む74 http://rio2016.5ch.net/test/read.cgi/math/1564659345/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
781: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/08/14(水) 15:27:20.20 ID:rg2Nhb+h おサルさん、(>>692より)【必死のパッチ】やなww(^^; >>775 ”if i is chosen uniformly independently of that strategy” のindex iについてww これ下記の”Alexander Pruss Dec 19 '13 at 15:05 ”の抜粋なw 以下の応答を嫁めw(^^ 要するに、力点は、But以下の文にあるってことと 前文の”if i is chosen uniformly independently of that strategy”の部分が未証明だってことよw (参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Dec 9 '13 (抜粋) sked Dec 9 '13 at 16:16 Denis The Modification I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. a answered Dec 11 '13 at 21:07 Alexander Pruss Let's go back to the riddle. Suppose u ̄ is chosen randomly. The most natural option is that it is a nontrivial i.i.d. sequence (uk), independent of the random index i which is uniformly distributed over [100]={0,...,99}. In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct. Denis Dec 17 '13 at 15:21 Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. つづき http://rio2016.5ch.net/test/read.cgi/math/1564659345/781
782: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/08/14(水) 15:28:16.70 ID:rg2Nhb+h >>781 つづく Alexander Pruss Dec 19 '13 at 15:05 What we have then is this: For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here isn't in the probabilistic sense), we win with probability at least (n-1)/n. That's right. But now the question is whether we can translate this to a statement without the conditional "For each fixed opponent strategy". answered Dec 9 '13 at 17:37 In order for such a question to make sense, it is necessary to put a probability measure on the space of functions f:N→R. Note that to execute your proposed strategy, we only need a uniform measure on {1,…,N}, but to make sense of the phrase it fails with probability at most 1/N, we need a measure on the space of all outcomes. The answer will be different depending on what probability space is chosen of course. If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1564659345/782
783: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/08/14(水) 15:31:37.76 ID:rg2Nhb+h >>781 タイポ校正 sked Dec 9 '13 at 16:16 Denis The Modification I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. a ↓ asked Dec 9 '13 at 16:16 Denis The Modification I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. 分かると思うが念のため askedのaが取り残されて分離されていたってことね(^^; http://rio2016.5ch.net/test/read.cgi/math/1564659345/783
784: 132人目の素数さん [] 2019/08/14(水) 15:35:22.09 ID:c6g6R1pg >>781-783 必死なのは、ゴキブリ、貴様だ 測度は必要ない どう100列を選んだところで、その瞬間 他の列より大きな決定番号を持つ列は たかだか1列 決して2列以上にはできない その瞬間、Prussは負けた 貴様も負けたw http://rio2016.5ch.net/test/read.cgi/math/1564659345/784
785: 132人目の素数さん [] 2019/08/14(水) 15:43:24.34 ID:MPteNw3f >>781 おまえ中身分かって書いてねーだろw ただコピペしてるだけだろw Prussは確率論の専門家と同じことを言ってるんだよw 確率論の専門家が何をどう勘違いしているかは解説済みw おまえが理解できないだけの話w 確率論の専門家の勘違い内容は解説してやったから、まずはよく読んで理解しろ、話はそれからだw http://rio2016.5ch.net/test/read.cgi/math/1564659345/785
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s