[過去ログ] 高校数学の質問スレ Part437 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
35(1): 2024/07/17(水)14:28 ID:AyFkglV/(2/3) AAS
>>32の脳内医療w
465:卵の名無しさん (ワッチョイ 0324-cl90 [149.50.210.2 [上級国民]]):[sage]:2024/07/16(火) 07:49:52.97 ID:F4f2ML0u0
>心臓麻酔以外なら普通に出来るよ
これもダウトだな、多分、嘘だね。
産科の麻酔や乳児の麻酔ができるとは思えん。
ショックバイタルの緊急帝王切開や乳児の鼠径ヘルニアの麻酔したことあんの?
心臓麻酔ではないけどね。
成人の心外の麻酔は俺はやってた。研修医にも監視下でやらせるような病院だった。
ポンプマンとのコミュニケーションがきちんととれていれば別に困難な麻酔でもなかったな。
478:卵の名無しさん (ワッチョイ b579-kB53 [240b:253:1000:dd10:* [上級国民]]):[sage]:2024/07/17(水) 06:40:53.79 ID:iTB5x1gs0
省18
36(1): 2024/07/17(水)14:52 ID:jXA/kgjj(6/8) AAS
>>29
f(x) = xx−2,
a[n+1] = a[n] − f(a[n]) / f '(a[n])
= (a[n]−√2)^2 /2a[n] ...... 2乗収束
もし g(x) = f(x)/√x = (xx−2)/√x をとれば
g"(x) = (3/4)g(x)/x^2, g"(√2) = (3/8)g(√2) = 0,
a[n+1]−√2 = (a[n]−√2)^3 /(3a[n]^2+2) …… 3乗収束
若干 収束が早い
一松 信 著「数値計算」至文堂 近代数学新書 (1963)
第2章, 第3節, §38, 2) 立方根 p.150-151
37: 2024/07/17(水)15:29 ID:jXA/kgjj(7/8) AAS
↑
漸化式は
b[n+1] = b[n] (b[n]^2 +6) / (3b[n]^2 +2),
b[n]/√2 に対しては coth の 3倍角公式の形。。。
38: 2024/07/17(水)15:42 ID:jXA/kgjj(8/8) AAS
↑
b[n] = (√2) coth(θ・3^n)
θ は b[0] = (√2) coth(θ) = a をみたす。
39(1): 2024/07/17(水)16:16 ID:HIM317T1(4/4) AAS
1年を365日として、どの月日に生まれるかの確率は同じとする。
無作為に10人集めたときに誕生日が同じ月日の人がいる確率は
2689423743942044098153 / 22996713557917153515625 である。
(同じ誕生月日の人が2人以上いる、2組以上いる場合も含む)
(1)4年に1年閏年があるとして、無作為に10人集めたときに誕生日が同じ月日の人がいる確率を分数で求めよ。
(2)400年に97年閏年があるとして無作為に10人(故人でもよい)集めたときに誕生日が同じ月日の人がいる確率を分数で求めよ。
40: 2024/07/17(水)21:22 ID:AyFkglV/(3/3) AAS
脳内医療には発狂すらできずここでもダンマリ決め込むしかないみたいだねw
41(1): 2024/07/17(水)23:09 ID:+ini/I4f(3/3) AAS
>>22
12Sum[1/i,{i,1,12}]
86021/2310
b=Table[1,12];
p=b/Total[b];Sum[-(-1)^i Total[1/Total/@Subsets[p,{i}]],{i,1,Length[p]}]
86021/2310
a={31,28,31,30,31,30,31,31,30,31,30,31};b=4a;b[[2]]++;
p=b/Total[b];Sum[-(-1)^i Total[1/Total/@Subsets[p,{i}]],{i,1,Length[p]}]
26365471265193736856469417177253117577210996101602242798317734568788770322364718854541253252415521223542493
/707029362489712664129528906355283102325811557995784708506463575533631651966262215455928795644621961528800
省6
42: 2024/07/18(木)02:47 ID:ZDG1ipH1(1/6) AAS
>>22
(1)
ちょうどn人目で終了する確率p(n)は
p(n) ≒ Σ[L=0,11] (-1)^{L+1} C[11,L] (L/12)^{n-1}
43: 2024/07/18(木)02:51 ID:ZDG1ipH1(2/6) AAS
>>36
1.585倍 早い。
log(3)/log(2) ≒ 1.585
2^1.585 ≒ 3
44: 2024/07/18(木)07:08 ID:aSqi/aHR(1/3) AAS
>>41
レスありがとうございます。
1行に纏められているのが素晴らしい。
想定解の結果と合致しました。
画像リンク[png]:i.imgur.com
45: 2024/07/18(木)07:31 ID:KraA+kLz(1/3) AAS
>>39
(2)の設定で集めた人数と誕生日が同じ月日の人がいる確率をグラフ化。
画像リンク[png]:i.imgur.com
46(1): 2024/07/18(木)07:37 ID:KraA+kLz(2/3) AAS
>45のグラフであたりをつけて計算する問題。
400年に97年閏年があるとして無作為に何人か(故人でもよい)を集めたときに誕生日が同じ月日の人がいる確率を95%以上にしたい。
何人以上集めればよいか?そのときの確率を分数で表せ。
47: 2024/07/18(木)07:50 ID:51LFCWpF(1) AAS
>>35
何か素人がネットで調べた知識を無理矢理難しい言葉使ってさも知ってる感を出してるみたいな雰囲気を感じる
48: 2024/07/18(木)08:41 ID:6XOXMrdx(1) AAS
>>46
なんで尿瓶とそれにレスするアホが毎回同時に現れて同時に消えるんでしょうね?ww
49: 2024/07/18(木)11:47 ID:uD87I7gr(1) AAS
不等式の面白い問題ありませんか?
50(5): 2024/07/18(木)12:09 ID:KraA+kLz(3/3) AAS
この分数解をだそうとしたら
too large; it must be a machine integer.
というメッセージがでて算出できなかった。
問題
1年を365日として、どの月日に生まれるかの確率は同じとする。
無作為に50人集めたときに誕生日が同じ月日の人が3人以上いる確率を求めよ。
(同じ誕生月日の人が3人以上いてもよい、それが複数組いてもよい)。
シミュレーションでの近似解
n=50
m=3
省2
51(1): 2024/07/18(木)12:16 ID:CZZJ3ij5(1/2) AAS
すみません。
スレの数式の記載方法についての質問です。
偶数の数列は
Σ[k=1,n] 2k
という表記でいいんですか?
Σ[k=1, n, 2k]
でもいいと思うんですがだめですか?
52(1): 2024/07/18(木)12:41 ID:BBYHenST(1) AAS
数列を表すのにΣを使われて分かる人はいないんじゃないかな
53(2): 2024/07/18(木)12:46 ID:ZDG1ipH1(3/6) AAS
k=1, 2, 3,……, n についての f(2k) の和:
Σ[k=1,n] f(2k)
ぢゃね?
54: 2024/07/18(木)12:51 ID:kNQZWfgV(1) AAS
>>51
Σはギリシャ語でいうSの文字で、sum(和)のこと
上下前次1-新書関写板覧索設栞歴
あと 948 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.994s*