[過去ログ] 高校数学の質問スレ Part434 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
47: 2024/04/08(月)19:24:02.50 ID:mbGKeakd(2/2) AAS
次の命題の真偽を判定せよ

(罵倒厨でないならば 罵倒厨である)ならば Phimoseである。
156: 2024/04/14(日)05:37:39.50 ID:T4z17oY+(4/22) AAS
Rでの算出
> tbl
1 2 3 4 5 6 7 8 9
415441 77025 75290 74114 72951 72257 71564 71038 70320
> order(tbl,decreasing = TRUE)
[1] 1 2 3 4 5 6 7 8 9

Wolframscriptでの算出
In[30]:= a=Table[Count[Table[First[IntegerDigits[n]], {n, Prime[Range[10^6]]}],m],{m,9}]

Out[30]= {415441, 77025, 75290, 74114, 72951, 72257, 71564, 71038, 70320}

In[31]:= Reverse[Table[Range[9][[i]],{i,Ordering[a]}]]
省3
248: 2024/04/16(火)22:25:34.50 ID:7gGe0Okf(2/2) AAS
>>238
その前提で組んだけど、(n-1)乗固定ではないのなら、ちょっとだけ改変

count=0;
Do[
For[flag=1;k=1,flag==1 && k<n,k++,If[Mod[k^m,n]==1,Null,flag=0]];
If[flag==1,count++;Print[{count,n,m,Prime[count]}],Null];
,{n,2,18000},{m,1,n-1}]

与えられた、mとnに対し、k=1,2,3,...,n-1と変化しても、常に、Mod[k^m,n]==1なら、出力
300: 2024/04/18(木)21:43:31.50 ID:64Io791z(10/12) AAS
>>291 補足

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= (* 小数表示された実数の小数第 n 位を四捨五入する *)

In[2]:= around[m_,n_:1] := (
a=m*10^(n-1);
x=a-Floor[a];
y=Floor[a] + Boole[x >= 0.5];
N[y/10^(n-1)]
)
省12
341
(1): 2024/04/20(土)12:59:04.50 ID:+SMyJsjZ(2/2) AAS
部分分数分解することは思いつきませんでした。
ありがとうございます。
372: 2024/04/21(日)09:41:24.50 ID:4fZB8HoF(2/2) AAS
素数の周りにはゴミクズがたかってくるな
467
(1): 2024/04/23(火)23:37:21.50 ID:nfeXM0n/(4/4) AAS
F(a) = ∫[0,∞]{1/(1+e^x) - 1/(1+e^(ax))}/x dx
F'(a) =∫[0,∞]e^(ax)/(1+e^(ax))^2 dx = 1/(2a)
F(0) = 0
F(a) = log(a)/2
706
(1): 2024/04/30(火)09:33:53.50 ID:VcpWQbIP(9/15) AAS
具体的な問題は計算する意欲がわく。
具体的な問題なので具体的な数値の方が現実味が増すので
数値を設定して問題化。乱数発生させて確率を設定して具体化。

武器のレベルを上げるためにアイテムを1つ使用します
その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています。
その確率は、それぞれ 1.00 0.27 0.37 0.57 0.91 0.20 0.90 0.94 0.66 0.63とする。
レベル10まで到達するために必要なアイテムの数を item とする。
(1) itemの期待値を求めよ。
(2) itemの中央値を求めよ
省5
787
(1): 2024/05/03(金)06:13:07.50 ID:/GsOL4J8(2/2) AAS
東大合格者向けの命題の問題

次の各命題が恒真命題であるか否かを答えよ。

(1) 罵倒厨ならば(自演認定厨ならば罵倒厨である)。
(2) (罵倒厨でないならば 罵倒厨である)ならば 自演認定厨である。
901
(3): 2024/05/06(月)13:17:06.50 ID:xxhQy/YG(20/23) AAS
>>899
やはり、東大合格者じゃなかったようだな。
合格通知の書式すら知らなかったからなぁ。
どこのシリツなんだ?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s