[過去ログ] 高校数学の質問スレ Part434 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
452(2): 2024/04/23(火)15:30 ID:3TQhzN7m(1) AAS
一辺の長さが1の正方形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるようなA,B,Cの位置を求めよ。
453(3): 448 2024/04/23(火)15:38 ID:7Ack2Qhi(5/10) AAS
>>450
GX。,CI → Xi
としました。
GI // CX。
から 三角相等で
△GIXi ≡ △X。CXi
∴ BXi は GIの中点、CX。の中点を通ります。
∴ BXi の傾きは BDの傾きの 1/3 だから
辺CD の下から1/3の点Jで交わる。 (この2つは同値ですね)
454(1): 448 2024/04/23(火)15:56 ID:7Ack2Qhi(6/10) AAS
>>453 の補足
CX。の中点をMとすれば
(BMの傾き) = (CD/4)/(3BC/4) = (1/3)(CD/BC) = (1/3)(BDの傾き)
>>450
長方形の周上あるいは対角線上の点ならば簡単ですね。その他は、、、
本問は、対角線の平行線が描ければ、あとは何とかなりますって (?)
455: 448 2024/04/23(火)16:08 ID:7Ack2Qhi(7/10) AAS
>>453 の補足
△GIXi ∽ △X。CXi
なので…
もう少し補足が必要である。。。
456(1): 2024/04/23(火)17:25 ID:F7CNSCrw(1) AAS
f(p,q) = |12√17 - p√q| とする。
f(p,q)≠0の条件下で正整数p,qを動かすとき、f(p,q)を最小にするp,qをすべて求めよ。
457(1): 2024/04/23(火)17:57 ID:mBdwwsnl(5/8) AAS
>>454
既知の直線上で定規で対称点が確定できる(たとえば長さを計るのがゆるされるとか)なら、
中点も確定できるのではないかなぁ、と思った。
458(1): 2024/04/23(火)18:25 ID:mBdwwsnl(6/8) AAS
作図をアニメーションにしてみた。
画像リンク[gif]:i.imgur.com
459: 2024/04/23(火)18:33 ID:mBdwwsnl(7/8) AAS
>>453
すみません、誤解していました。
角度が1/3ではなくて、傾きが1/3でした。
460: 2024/04/23(火)19:13 ID:mBdwwsnl(8/8) AAS
>>452
R言語のお告げ(Nelder-Mead法)によれば、
直角二等辺三角形になるときが最大(厳密には極大値だが)。
461(1): 448 2024/04/23(火)21:26 ID:7Ack2Qhi(8/10) AAS
>>450
直線は (周との交点を利用すれば) 反転できるので、
その点を通る直線を2本曳けば良さげ
>>457
中点は 定規だけでは難しい鴨
462(1): 2024/04/23(火)21:35 ID:QOQcIrlk(1) AAS
>>461
>中点は 定規だけでは難しい鴨
無理
463(2): 2024/04/23(火)22:03 ID:Ep53ozuL(2/2) AAS
二次方程式 x^2-sx+t=0が、0以上1以下の範囲に二つの解(重解含む)をもつための条件は、
・半物式 s^2-4t≧0
・軸 0≦s/2≦1
・f(0)=t≧0, f(1)=1-s+t≧0
を合わせたもの、でいいですか。
464(3): 2024/04/23(火)22:06 ID:7Ack2Qhi(9/10) AAS
>>456
ppq = 12*12*17 + 1 = 2449 = 31*79,
∴ (p, q) = (1, 2449)
465(1): 2024/04/23(火)22:39 ID:7Ack2Qhi(10/10) AAS
>>458
いいね✌
P と P_ は 無くてもいいかな。
E~ の作図 >>448 はあった方がいいよね。
466(1): 2024/04/23(火)23:09 ID:bT32WDi6(1) AAS
∫[0,∞]{1/(1+e^x) - 1/(1+e^(2x))}/x dx を求めよ。
467(1): 2024/04/23(火)23:37 ID:nfeXM0n/(4/4) AAS
F(a) = ∫[0,∞]{1/(1+e^x) - 1/(1+e^(ax))}/x dx
F'(a) =∫[0,∞]e^(ax)/(1+e^(ax))^2 dx = 1/(2a)
F(0) = 0
F(a) = log(a)/2
468(1): 2024/04/24(水)00:29 ID:1evHUg6J(1) AAS
nを正の整数とする。
(1)sin(2nx)/sin(x) = 2Σ[k=1,n] cos((2k-1)x) を示せ。
(2)∫[0,π/2] (sin(2nx)/sin(x))^2 dx = nπ を示せ。
(3)πn - π/2 < ∫[0,π/2] (sin(2nx)/x)^2 dx < πn を示せ。
(4)∫[0,∞] (sin(x)/x)^2 dx を求めよ。
469: 2024/04/24(水)01:27 ID:m0i89ept(1) AAS
f(x) := indicator of [-1/2,1/2]
F(f) = ∫[-∞,∞]f(x)exp(2πixt)dx
= 1/(2πit)(exp(πit)-exp(-πit))
= sin(πt)/(πt)
∫[-∞,∞] (sin(πt)/(πt))^2dt = ∫[-∞,∞] f(x)^2dx = 1
∫[-∞,∞] (sin(u)/(u))^2du = π
470(1): 2024/04/24(水)02:21 ID:LloxEhQT(1/6) AAS
>>466
〔参考書〕
高木貞治「解析概論」改訂第三版、岩波書店 (1961)
第4章、§48.定理42.p.166〜167
>>467
F(1) = 0, (← 揚足取 御免)
>>468
(1) 和積公式より
sin(2kx) − sin(2(k-1)x) = 2sin(x)・cos((2k-1)x),
k = 1,2,…,n でたす。
省17
471(1): 2024/04/24(水)03:22 ID:LloxEhQT(2/6) AAS
〔参考書〕
高木貞治「解析概論」改訂第三版、岩波書店 (1961)
第4章、§48.[例4] 式(10) p.169 (はなはだ技巧的)
第5章, 練習問題(5)-(4) p.264 (見通しよい)
上下前次1-新書関写板覧索設栞歴
あと 531 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.015s