[過去ログ]
高校数学の質問スレ Part434 (1002レス)
高校数学の質問スレ Part434 http://rio2016.5ch.net/test/read.cgi/math/1712376048/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
737: 132人目の素数さん [] 2024/05/01(水) 10:50:53.72 ID:sgJI4piv age http://rio2016.5ch.net/test/read.cgi/math/1712376048/737
738: 132人目の素数さん [sage] 2024/05/01(水) 12:04:05.10 ID:YLWuTEmf t≧1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^2 0<t≦1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^4 http://rio2016.5ch.net/test/read.cgi/math/1712376048/738
739: 132人目の素数さん [sage] 2024/05/01(水) 13:11:02.13 ID:j7aeZLGo >>683 追加補足 例えば、レベル i への成功確率を100-5i、失敗確率は全て0.1(但しレベル1以上)だとすると、 mathematicaでは次のようにして計算できます。 v=Table[x[i],{i,0,10}]; u=Table[Boole[i!=10],{i,0,10}]; M={ { 5,95, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {10, 0,90, 0, 0, 0, 0, 0, 0, 0, 0}, { 0,10, 5,85, 0, 0, 0, 0, 0, 0, 0}, { 0, 0,10,10,80, 0, 0, 0, 0, 0, 0}, { 0, 0, 0,10,15,75, 0, 0, 0, 0, 0}, { 0, 0, 0, 0,10,20,70, 0, 0, 0, 0}, { 0, 0, 0, 0, 0,10,25,65, 0, 0, 0}, { 0, 0, 0, 0, 0, 0,10,30,60, 0, 0}, { 0, 0, 0, 0, 0, 0, 0,10,35,55, 0}, { 0, 0, 0, 0, 0, 0, 0, 0,10,40,50}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,100}}/100; Reduce[v+u==M.v,Delete[v,1]] http://rio2016.5ch.net/test/read.cgi/math/1712376048/739
740: 132人目の素数さん [sage] 2024/05/01(水) 13:11:43.23 ID:j7aeZLGo 続き 20 130 3490 19445 76033 666209 Out[6]= x[1] == -- + x[0] && x[2] == --- + x[0] && x[3] == ---- + x[0] && x[4] == ----- + x[0] && x[5] == ----- + x[0] && x[6] == ------ + x[0] && 19 57 969 3876 11628 81396 10556593 37908457 492959263 2889951391 > x[7] == -------- + x[0] && x[8] == -------- + x[0] && x[9] == --------- + x[0] && x[10] == ---------- + x[0] 1058148 3174444 34918884 174594420 In[7]:= %//N Out[7]= x[1.] == 1.05263 + x[0.] && x[2.] == 2.2807 + x[0.] && x[3.] == 3.60165 + x[0.] && x[4.] == 5.01677 + x[0.] && x[5.] == 6.53879 + x[0.] && > x[6.] == 8.18479 + x[0.] && x[7.] == 9.97648 + x[0.] && x[8.] == 11.9418 + x[0.] && x[9.] == 14.1173 + x[0.] && x[10.] == 16.5524 + x[0.] シミュレーションを行うなら、 Table[pq[i]={95-5*i,10*Boole[i>0],5+5*i-10*Boole[i>0]}/100,{i,0,9}] Sim:=(For[L=count=0,L<10,count++,L+=RandomChoice[pq[L]->{1,-1,0}]];count) n=100000;sum=0;Do[sum+=Sim,n];sum/n//N 数秒待たされますが、16.556、16.552、16.5607等の値が得られます。 http://rio2016.5ch.net/test/read.cgi/math/1712376048/740
741: 132人目の素数さん [] 2024/05/01(水) 13:21:44.69 ID:AD3i5GdB >>736 x≧0, y≧0 より f(x,y) + g(x,y) = 2(x−y)(√x−√y) ≧ 0, ∴ f(x,y) <0, g(x,y) <0 となることはない。 http://rio2016.5ch.net/test/read.cgi/math/1712376048/741
742: 132人目の素数さん [] 2024/05/01(水) 14:05:30.22 ID:AD3i5GdB >>715 断面三角形の「頂点」は立方体 [0,1]^3 の稜だから a,b,c のうち2つは 0 か 1 0≦s≦1 … u = 0・0・s = 0, 1≦s≦2 … u = 0・(s-1)・1 = 0, 2≦s≦3 … u = (s-2)・1・1 = s-2, http://rio2016.5ch.net/test/read.cgi/math/1712376048/742
743: 132人目の素数さん [sage] 2024/05/01(水) 14:10:59.67 ID:oovJ6Flh 50円の割引券が1枚ある。 この割引券を使い、100円の商品Aか、200円の商品Bを50円引きで購入したい。 以下の①~③から正しいものを選べ。 ①Aに割引券を使うほうが得である ②Bに割引券を使うほうが得である ③①、②のいずれも誤りである http://rio2016.5ch.net/test/read.cgi/math/1712376048/743
744: 132人目の素数さん [sage] 2024/05/01(水) 14:33:21.69 ID:a9i08X5o レス乞食大量発生中 http://rio2016.5ch.net/test/read.cgi/math/1712376048/744
745: 132人目の素数さん [] 2024/05/01(水) 15:04:48.18 ID:AD3i5GdB >>692 重心間の距離 x = R・{[cos(π/7)+sin(π/7)][2cos(π/7)-1]−1}/{2cos(2π/7)[1+2sin(π/7)]} = 0.030256170633 R cos(π/7)−cos(2π/7)−cos(4π/7) = 1/2, −sin(π/7) + sin(2π/7) + sin(4π/7) = (1/2)√7, http://rio2016.5ch.net/test/read.cgi/math/1712376048/745
746: 【豚】 [sage] 2024/05/01(水) 16:13:22.51 ID:05InBZP6 前>>733 >>666 正7角形と正方形の中心はわずかにずれるから、 中心付近に原点をとるのを避け、 正7角形をx軸に正対させ、正中線にy軸をとると、 正方形の1辺の長さの半分をaとして、 正方形の面積は4a^2 y軸上の正7角形の頂点の座標は(0,1+cos(π/7)) 正方形の上辺のy座標は、 1-a{sin(π/7)/cos(π/7)}+cos(π/7) 正方形の下辺のy座標は、 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a 一方、正7角形の下辺右端の座標は(sin(π/7),0) そこから正方形の右下端 (a, 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a) までの傾きはsin(2π/7)/cos(2π/7)だから、 {a-sin(π/7)}{sin(2π/7)/cos(2π/7)} =1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a {sin(2π/7)/cos(2π/7)+sin(π/7)/cos(π/7)+2}a = {sin(2π/7)/cos(2π/7)}sin(π/7)+cos(π/7)+1 2倍角の公式より、 [2sin(π/7)cos(π/7)/{2cos^2(π/7)-1}+sin(π/7)/cos(π/7)+2]a =[2sin^2(π/7)cos(π/7)/{2cos^2(π/7)-1}+cos(π/7)+1 通分して{2sin(π/7)cos^2(π/7)+2sin(π/7)cos^2(π/7)-sin(π/7)+4cos^3(π/7)-2cos(π/7)}a =2sin^2(π/7)cos^2(π/7)+2cos^4(π/7)-cos^2(π/7)+2cos^3(π/7)-cos(π/7) a=cos(π/7){2cos(π/7)-1}{cos(π/7)+1}/{4cos^3(π/7)+4sin(π/7)cos^2(π/7)-sinπ/7-2cos(π/7)} =1.37348980186/2.09841771404 =0.65453593565 ∴4a^2=1.71366916427 http://rio2016.5ch.net/test/read.cgi/math/1712376048/746
747: 【豚】 [sage] 2024/05/01(水) 16:15:33.02 ID:05InBZP6 前>>733 >>666 正7角形と正方形の中心はわずかにずれるから、 中心付近に原点をとるのを避け、 正7角形をx軸に正対させ、正中線にy軸をとると、 正方形の1辺の長さの半分をaとして、 正方形の面積は4a^2 y軸上の正7角形の頂点の座標は(0,1+cos(π/7)) 正方形の上辺のy座標は、 1-a{sin(π/7)/cos(π/7)}+cos(π/7) 正方形の下辺のy座標は、 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a 一方、正7角形の下辺右端の座標は(sin(π/7),0) そこから正方形の右下端 (a, 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a) までの傾きはsin(2π/7)/cos(2π/7)だから、 {a-sin(π/7)}{sin(2π/7)/cos(2π/7)} =1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a {sin(2π/7)/cos(2π/7)+sin(π/7)/cos(π/7)+2}a = {sin(2π/7)/cos(2π/7)}sin(π/7)+cos(π/7)+1 2倍角の公式より、 [2sin(π/7)cos(π/7)/{2cos^2(π/7)-1}+sin(π/7)/cos(π/7)+2]a =[2sin^2(π/7)cos(π/7)/{2cos^2(π/7)-1}+cos(π/7)+1 通分して{2sin(π/7)cos^2(π/7)+2sin(π/7)cos^2(π/7)-sin(π/7)+4cos^3(π/7)-2cos(π/7)}a =2sin^2(π/7)cos^2(π/7)+2cos^4(π/7)-cos^2(π/7)+2cos^3(π/7)-cos(π/7) a=cos(π/7){2cos(π/7)-1}{cos(π/7)+1}/{4cos^3(π/7)+4sin(π/7)cos^2(π/7)-sinπ/7-2cos(π/7)} =1.37348980186/2.09841771404 =0.65453593565 ∴4a^2=1.71366916427 http://rio2016.5ch.net/test/read.cgi/math/1712376048/747
748: 132人目の素数さん [sage] 2024/05/01(水) 16:41:41.76 ID:oovJ6Flh 次の極限をaで表せ。 ただしaは実数の定数で、a≠-2とする。 Σ[k=0,∞] 1/(k^2+ak+1) http://rio2016.5ch.net/test/read.cgi/math/1712376048/748
749: 132人目の素数さん [sage] 2024/05/01(水) 16:49:37.95 ID:bYmgV8Yf 一辺の長さが1の正三角形ABCの辺AB,BC,CA上にそれぞれ点D,E,Fをとる。 ただしD,E,Fは△ABCの頂点には一致しないものとする。 (1)s,t,uは0より大きく1より小さい実数とする。AD=s、BE=t、CF=uのとき、△DEFの面積をs,t,uで表せ。 (2)△ADFの重心をP、△BEDの重心をQ、△CFEの重心をRとする。 (△PQRの面積)≧(△DEFの面積) を示せ。 (3)(2)の不等式において等号が成立する場合をすべて求めよ。 http://rio2016.5ch.net/test/read.cgi/math/1712376048/749
750: 132人目の素数さん [sage] 2024/05/01(水) 16:54:16.12 ID:lmX+G2vB mを自然数とする。 以下の極限が収束するかどうかを判定せよ。 lim[n→∞] Σ[k=2,n] 1/[k{(logk)^m}] http://rio2016.5ch.net/test/read.cgi/math/1712376048/750
751: 132人目の素数さん [sage] 2024/05/01(水) 18:16:34.89 ID:YLWuTEmf (3 s t + 3 s u - 3 s + 3 t u - 3 t - 3 u + 9 )/9 ≧ stu + (1-s)(1-t)(1-u) http://rio2016.5ch.net/test/read.cgi/math/1712376048/751
752: 132人目の素数さん [sage] 2024/05/01(水) 19:13:42.89 ID:lcM/C+EM (3 s t + 3 s u - 3 s + 3 t u - 3 t - 3 u + 9 )/27 ≧ stu + (1-s)(1-t)(1-u) http://rio2016.5ch.net/test/read.cgi/math/1712376048/752
753: 132人目の素数さん [sage] 2024/05/01(水) 19:19:55.66 ID:lcM/C+EM https://www.wolframalpha.com/input?i=%283+x+y+%2B+3+y+z+%2B+3+x+z+-3x+-3y+-3z%2B+9+%29+-+27x+y+z-+27+%281-x%29%281-y%29%281-z%29&lang=ja http://rio2016.5ch.net/test/read.cgi/math/1712376048/753
754: 132人目の素数さん [sage] 2024/05/01(水) 20:15:34.70 ID:mCjWTIo5 >>747 Rでの作図に用いた数値と合致しております。お疲れ様でした。 正方形の1辺の長さ > abs(A-B) [1] 1.309072 > abs(A-B)^2 [1] 1.713669 対角線の交点と原点(7角形の重心)との距離 > abs(intsect(A,C,B,D)) [1] 0.0302562 http://rio2016.5ch.net/test/read.cgi/math/1712376048/754
755: 132人目の素数さん [] 2024/05/01(水) 23:09:37.73 ID:QBB0w06A >>750 ・m=1 のとき 1/{k・log(k)} ≧ log(1+1/k) / log(k) = log(k+1)/log(k) − 1 ≧ log{log(k+1)/log(k)} = log(log(k+1)) − log(log(k)), より Σ[k=2,n] 1/{k・log(k)} ≧ log(log(n+1))−log(log(2)) → ∞ (n→∞) ∴ 発散 * x ≧ log(1+x) を使った。 ・m>1 のとき Σ[k=3,n] 1/{k・log(k)^m} ≦ Σ[k=3,n] ∫[k-1,k] 1/{x・log(x)^m} dx = ∫[2,n] 1/{x・log(x)^m} dx = (1/(m-1))[ −1/log(x)^{m-1} ](x=2,n) = (1/(m-1))( 1/log(2)^{m-1} − 1/log(n)^{m-1} ) → (1/(m-1)) 1/log(2)^{m-1} (n→∞) ∴ 収束 http://rio2016.5ch.net/test/read.cgi/math/1712376048/755
756: 132人目の素数さん [] 2024/05/01(水) 23:24:55.24 ID:AD3i5GdB γ ' = Σ[k=2,n] 1/{k・log(k)} − log(log(n)) = 0.79467864… (おいらの定数) http://rio2016.5ch.net/test/read.cgi/math/1712376048/756
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 246 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s