[過去ログ] 高校数学の質問スレ Part434 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
723
(2): 2024/04/30(火)18:54 ID:G1dpTkaa(3/3) AAS
◆お題

『縦4マス、
横5マスの20マスの中に
ランダムに選ばれた
1から20個の宝が眠っている
AFKPBGLQ…の順で縦に宝を探していく
方法をとるP君と、
ABCDEFGH…の順で横に宝を探していく
方法をとるQ君が、
同時に地点Aから探索を開始した
省7
724: 2024/04/30(火)19:41 ID:mjLF6hIG(1) AAS
50円の割引券が1枚ある。
この割引券を使い、100円の商品Aか、200円の商品Bを50円引きで購入したい。
以下の①~③から正しいものを選べ。

①Aに割引券を使うほうが得である
②Bに割引券を使うほうが得である
③①、②のいずれも誤りである
725
(1): 2024/04/30(火)20:38 ID:VcpWQbIP(12/15) AAS
>>683
>レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
の確率に関しては情報がないため
下がる そのまま 上がる の確率は 形状パラメータ(1,1,1)のディリクレ分布に従って変動するとして計算する。

乱数発生させてWolfram言語でのシミュレーション(推敲希望)

sim[] :=(
item=0;
L=0;
While[L<10,
p1p2=RandomVariate[DirichletDistribution[{1,1,1}]];
省19
726
(1): 2024/04/30(火)21:47 ID:VcpWQbIP(13/15) AAS
>>725
自己推敲

sim[] :=(
item=0;
L=0;
While[L<10,
p1p2=RandomVariate[DirichletDistribution[{1,1,1}]];
p={p1p2[[1]],p1p2[[2]],1-Total[p1p2]};
d=RandomChoice[p -> {-1,0,1}];
If[!(L==0 && d==-1), L=L+d];
省3
727
(1): 2024/04/30(火)22:08 ID:CMYzy4AG(2/2) AAS
>>714 ありがとうございます。

>u = (1-ab)(1-c) + (1-a)(1-b) + (s-2) ≧ s-2

この変形は普通に思い浮かぶものなのですか?
なんか天才の狂気じみたヒラメキに見えるのですが( ゚д゚)ポカーン
728: 2024/04/30(火)22:29 ID:VcpWQbIP(14/15) AAS
>>726
可読性向上

sim[] :=(
item=0;
L=0;
While[L<10,
p1=RandomReal[]; (* runif(1) *)
p2=RandomReal[1-p1]; (* runif(1,0,1-p1) *)
p3=1-p1-p2;
d=RandomChoice[{p1,p2,p3} -> {-1,0,1}]; (* sample(c(-1,1,1),1,prob=c(p1,p2,p3)) *)
省5
729: 2024/04/30(火)22:31 ID:VcpWQbIP(15/15) AAS
>>723
デジャブかな?過去スレでみたような。
730: 714 2024/04/30(火)22:56 ID:ElCKljKY(5/5) AAS
>>727
そうかもね。
a, b, c のうち2つが1に近づくとき等号だから
1-a, 1-b, 1-c などの2次式になるんぢゃね?
731: 2024/04/30(火)23:24 ID:dbyjbpZp(1) AAS
77
732: 2024/05/01(水)02:45 ID:vlziLzZU(1) AAS
尿瓶ジジイのゴミみたいな自演
733
(2): 【大吉】 2024/05/01(水)03:48 ID:d9hBLn+1(1) AAS
>>688
厳密解が見えた。立式中。ちょっと待ってて。
ゴールデンウィーク中にやる。
自分で作図したら目が覚めた。
すでにある答案や綺麗な作図に惑わされてはいけない。
734: 2024/05/01(水)06:58 ID:kfVYB1fe(1) AAS
Wolfram言語の練習問題

>武器のレベルを上げるためにアイテムを1つ使用します
>その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
>また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています
を計算問題化。

設定された確率に関しては情報がないので、「下がる そのまま 上がる」の確率は無作為に決定されるとして計算する。

sim[] :=(
item=0;
L=0;
While[L<10,
省15
735: 2024/05/01(水)09:33 ID:mCjWTIo5(1/2) AAS
#上限を設定しないとシミュレーションがなかなか終わらないので到達レベル、上下確率、アイテム数を設定できるように修正。

sim = \(level=10,p=runif(3),limit=NULL){
item=0
L=0
while(L<level && item < ifelse(is.null(limit),Inf,limit+2)){
item=item+1
d=sample(c(-1,0,1),1,prob=p)
if(!(L==0 & d==-1)) L=L+d
}
return(item)
省7
736
(1): 2024/05/01(水)09:59 ID:FxX5gtGv(1) AAS
x>y≧0とする。
f(x,y) = x√x-2x√y+y√y
g(x,y) = x√x-2y√x+y√y
について、f(x,y)およびg(x,y)が負となることがあるならば、その(x,y)の一例を与えよ。
負となることがないならば、それを証明せよ。
737: 2024/05/01(水)10:50 ID:sgJI4piv(1) AAS
age
738: 2024/05/01(水)12:04 ID:YLWuTEmf(1/2) AAS
t≧1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^2
0<t≦1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^4
739: 2024/05/01(水)13:11 ID:j7aeZLGo(1/2) AAS
>>683
追加補足
例えば、レベル i への成功確率を100-5i、失敗確率は全て0.1(但しレベル1以上)だとすると、
mathematicaでは次のようにして計算できます。

v=Table[x[i],{i,0,10}];
u=Table[Boole[i!=10],{i,0,10}];
M={
{ 5,95, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{10, 0,90, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0,10, 5,85, 0, 0, 0, 0, 0, 0, 0},
省9
740: 2024/05/01(水)13:11 ID:j7aeZLGo(2/2) AAS
続き

20 130 3490 19445 76033 666209
Out[6]= x[1] == -- + x[0] && x[2] == --- + x[0] && x[3] == ---- + x[0] && x[4] == ----- + x[0] && x[5] == ----- + x[0] && x[6] == ------ + x[0] &&
19 57 969 3876 11628 81396

10556593 37908457 492959263 2889951391
> x[7] == -------- + x[0] && x[8] == -------- + x[0] && x[9] == --------- + x[0] && x[10] == ---------- + x[0]
1058148 3174444 34918884 174594420

In[7]:= %//N
Out[7]= x[1.] == 1.05263 + x[0.] && x[2.] == 2.2807 + x[0.] && x[3.] == 3.60165 + x[0.] && x[4.] == 5.01677 + x[0.] && x[5.] == 6.53879 + x[0.] &&

> x[6.] == 8.18479 + x[0.] && x[7.] == 9.97648 + x[0.] && x[8.] == 11.9418 + x[0.] && x[9.] == 14.1173 + x[0.] && x[10.] == 16.5524 + x[0.]
省5
741: 2024/05/01(水)13:21 ID:AD3i5GdB(1/4) AAS
>>736
 x≧0, y≧0 より
 f(x,y) + g(x,y) = 2(x−y)(√x−√y) ≧ 0,
∴ f(x,y) <0, g(x,y) <0 となることはない。
742: 2024/05/01(水)14:05 ID:AD3i5GdB(2/4) AAS
>>715
断面三角形の「頂点」は立方体 [0,1]^3 の稜だから
a,b,c のうち2つは 0 か 1
 0≦s≦1 … u = 0・0・s = 0,
 1≦s≦2 … u = 0・(s-1)・1 = 0,
 2≦s≦3 … u = (s-2)・1・1 = s-2,
1-
あと 260 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s