[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
734
(1): 日高 2020/01/10(金)20:47 ID:ojAexXlb(2/10) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}となる。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たすのは、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
735
(1): 日高 2020/01/10(金)20:49 ID:ojAexXlb(3/10) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2*1=(z+y)(z-y)となる。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
736: 2020/01/10(金)21:04 ID:L0M6/0PY(1) AAS
o(;д;o)キタ...!ヒダカッチ...!)
737
(2): 2020/01/10(金)21:19 ID:xfBAgq3J(1/6) AAS
>>733 日高

z^2=x^3+x^3を満たす自然数x,y,zを考えます。
z^2×1=(x+y)(x^2-xy+y^2)ですが
これから1=x^2-xy+y^2とz^2=x+yは導けません。
x=1,y=2,z=3が反例です。

ですから左辺がz^pであるという特殊性を使った証明が必要はなずです。
738
(1): 日高 2020/01/10(金)21:48 ID:ojAexXlb(4/10) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}となる。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
739
(1): 2020/01/10(金)21:50 ID:xfBAgq3J(2/6) AAS
>>738 日高

p,qを命題とするとき「pかつq」と「pならばq」との違いはわかりますか?
740: 2020/01/10(金)22:01 ID:g2vWCKRD(1) AAS
>>734-735
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
吉本興業に提出する数学ネタかと思った。
741
(1): 日高 2020/01/10(金)22:06 ID:ojAexXlb(5/10) AAS
>737
>z^2=x^3+x^3を満たす自然数x,y,zを考えます。
z^2×1=(x+y)(x^2-xy+y^2)ですが
これから1=x^2-xy+y^2とz^2=x+yは導けません。
x=1,y=2,z=3が反例です。

>ですから左辺がz^pであるという特殊性を使った証明が必要はなずです。

「x=1,y=2,z=3が反例です。」この場合、
9×1=(1+2)(1-2+4)となるので、
9×1=3×3
9×1=3×3×3×1/3
省3
742
(1): 2020/01/10(金)22:09 ID:xfBAgq3J(3/6) AAS
>>741 日高

> これから1=x^2-xy+y^2とz^2=x+yは導けません。
> x=1,y=2,z=3が反例です。

1≠1^2-1*2+2^2=3,9=3^2≠1+2=3であることは認めますか?
743
(1): 日高 2020/01/10(金)22:09 ID:ojAexXlb(6/10) AAS
>739
>p,qを命題とするとき「pかつq」と「pならばq」との違いはわかりますか?

すみません。よくわかりませんので、
詳しく教えていただけないでしょうか。
744
(2): 日高 2020/01/10(金)22:15 ID:ojAexXlb(7/10) AAS
>742
>> これから1=x^2-xy+y^2とz^2=x+yは導けません。
> x=1,y=2,z=3が反例です。

>1≠1^2-1*2+2^2=3,9=3^2≠1+2=3であることは認めますか?

はい。認めます。
745: 2020/01/10(金)22:15 ID:xfBAgq3J(4/6) AAS
>>743 日高

高等学校までの教科書に書いてある事項を無料で説明することはしませんので
ご自分で学ばれてから議論に参加してください。
746
(1): 2020/01/10(金)22:23 ID:xfBAgq3J(5/6) AAS
>>744 日高

ということは,>>722

> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}となる。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たすのは、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。

と書いておられますがz^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}から
省2
747
(1): 日高 2020/01/10(金)22:30 ID:ojAexXlb(8/10) AAS
>746
>z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}から
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)は無条件には出ません。
わかりますか?

分からないので、詳しく説明していただけないでしょうか。
748
(1): 日高 2020/01/10(金)22:33 ID:ojAexXlb(9/10) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2*1=(z+y)(z-y)となる。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
749
(1): 日高 2020/01/10(金)22:36 ID:ojAexXlb(10/10) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}となる。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
750
(1): 2020/01/10(金)22:40 ID:xfBAgq3J(6/6) AAS
>>747 日高
それでは逆にお尋ねしますがなぜ出ますか?
751
(1): 2020/01/10(金)23:11 ID:6/oUWmsY(1) AAS
>>737

>z^2=x^3+x^3を満たす自然数x,y,zを考えます。

この式、凄いなw
ヤツのロジックを忠実に踏まえつつ、矛盾を指摘してる。
よく思いついたもんだ。天才かょw

>>744 日高

キミのロジックでこの式、解けるかぃ?
全ての自然数解の組を導ける?
当てずっぽうはダメ。
752: 2020/01/10(金)23:58 ID:eg2IXum0(1) AAS
根拠なしに自分に都合の良いことだけ言い続ける虚言癖痴呆老人は飽きた。別な芸プリーズ。
753
(2): 2020/01/11(土)00:38 ID:wouI4gDv(1/5) AAS
>>748-749
AB=CDであるが、B=Dでないときの証明がないので間違いです。
1-
あと 249 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.013s