[過去ログ] 分からない問題はここに書いてね448 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
60
(8): 2018/10/25(木)11:48 ID:BJ8Ls50p(3/3) AAS
縦nマス、横n+1マスのn(n+1)マスのうちランダムに選ばれた2マスにそれぞれ宝が眠っている。
縦1列を探し終えたらすぐ右の1列に移って宝を探していく方法をとるP君と、横1行を探し終えたらすぐ下の1行に移って宝を探していく方法をとるQ君が、同時に左上の地点から探索を開始した。
例えば、n=3の時はP君はAEIBFJCGKDHLの順で探す。Q君はABCDEFGHIJKの順で探すことになる。

ABCD
EFGH
I JK L

1つの地点を捜索するのにかかる時間は同じで、相手が1度探し終えた地点を重複して調べることも当然ある。
相手より先に宝を見つけた方を勝者とする。同時の場合は引き分けとする。
どちらの方が有利になるだろうか?
79
(1): 2018/10/25(木)19:30 ID:StgroO81(1/6) AAS
>>60
コンピュータでシミュレーションしてみた。

n=3のときは (P1st::P君が先に見つける宝の埋没場所の組み合わせ数)

> t342=treasure(3,4,2)
P1st Q1st even
26 27 13

n=4のときは

> t452=treasure(4,5,2)
P1st Q1st even
84 83 23
省3
87
(1): 2018/10/25(木)21:38 ID:mkO25Lni(1/3) AAS
>>60>>61
Ωの部分集合を事象と言う
Ω自身は全事象と言う

Ω={A,B,C,D,E,F,G,H,I,J,K,L}となる

各 i (1≦i≦12) が根元事象である

最初に宝が出るという事象A={宝}で確率P(A)は

P(A)=1/12 となる
省16
149
(1): 2018/10/27(土)02:53 ID:OAQWCVH9(1/4) AAS
>>60
一つ質問ですが
スタート地点Aに宝があるとゲームスタートと同時に
同着でゲーム終了になるけど、ポイントAに宝は設置されるのですか?
161
(10): 2018/10/27(土)13:00 ID:BkDpmm6u(1/2) AAS
>>60
場合分けなどが面倒くさくて疲れ果てたけど、計算結果は>>133と一致。
P1st(n)-Q1st(n) が(偶奇によらず) (n^2-2n-6)(n-1)/6 になったので、n=2,3でQが、n≧4でPが有利。

コードはSagemath。
from sage.calculus.calculus import symbolic_sum
,var m,l,k,a,n
P1 = (symbolic_sum((m-1)*(m)-2*l-1, l,1,m-2)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,2*k) + symbolic_sum((m-1-k)*(m-k)+3*k-2*l-1, l,2*k+1,m-2), k,1,a-2)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,m-2), k,a-1,m-2)
).substitute({a:m/2}).substitute({m:n+1})
省20
168
(4): 2018/10/27(土)17:42 ID:OAQWCVH9(2/4) AAS
>>60
スタート地点のポイントAに宝があると
ゲーム開始とともに同着でゲーム終了になるので除外する
宝がいくつあったとしても、P君とQ君のどちらかが先に
一つでも宝を見つけるとそこでゲーム終了となる

縦方向の探査をn、横方向の探査をn+1として
宝の個数をkと置くと、調査する全範囲は
{n(n+1)−1}−(k−1)=n(n+1)−kと考えられる

Ω={n(n+1)−k)|n≧2,n(n+1)−1>k≧1}

■縦方向に探査をするP君の確率空間は
省17
194
(4): 2018/10/28(日)20:30 ID:x624ZJMX(1/6) AAS
>>161の若干の一般化とその導出を備忘録的に書いておきます。

>>60
まず、部屋を探る順番が一般の場合を考える。
部屋がNあり、その集合をRとする。A君、B君が探る順番を表わす全単射写像をそれぞれf,gとする:
f,g: R→{0,1,…,N-1} (順番は0から始まるとする。)
部屋自体の位置はなんら答えに影響しない。
σ=g・f^{-1} と置くと、σは{0,1,…,N-1}の置換。(・は写像の合成)
A君がi番目に探る部屋はB君がσ(i)番目に探る部屋ということ。
以下、「A君がi番目に探る部屋」のことを「部屋i」ということにする。

求めたいのは、「A君がB君よりも早く宝を見つける宝の配置の数」であるが、宝の数をcとすると、それは
省15
197
(4): 2018/10/28(日)20:34 ID:x624ZJMX(4/6) AAS
>>196
続き

部屋がm×(m+1) (n=m+1) のとき。
(m-1)l>(n-1)k ⇔ 0≦k≦m-2 かつ k+1≦l≦m。
(nk+l)/m = k + (k+l)/m より k+l<mのときq=k,r=k+l、k+l≧mのときq=k+1,r=k+l-m。
r>k (k+l<m)とr≦k (k+l≧m)とに分けるように場合分けをする:
@0≦k≦[(m-1)/2], k+1≦l≦m-k-2 のとき r>k、
A[(m+1)/2]≦l≦m-1, m-1-l≦k≦l-1 または Bl=m, 0≦k≦m-2 のとき r≦k。

m=6のとき
×@@@@AB
省31
198
(4): 2018/10/28(日)20:36 ID:x624ZJMX(5/6) AAS
>>197
続き

部屋がm×(m-1) (n=m-1) のとき。
(m-1)l>(n-1)k ⇔ 1≦l≦m-2 かつ 0≦k≦l。
(nk+l)/m = k + (l-k)/m より q=k,r=l-k。
r>k (l>2k)とr≦k (l≦2k)とに分けるように場合分けをする:
@0≦k≦[(m-3)/2], 2k+1≦l≦m-2 のとき r>k、
A1≦k≦[(m-3)/2], k≦l≦2k または B[(m-1)/2]≦k≦m-2, k≦l≦m-2 のとき r≦k。

m=7のとき
×@@@@@
省29
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.309s*