[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ3 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
441(4): 132人目の素数さん [] 2023/04/27(木)15:29 ID:VqRCmNfz(17/27)
数学者の証明になってもならなくても
こういうものはお見せしたい
奇素数pについて、不定方程式p=x^2+y^2が解を持つための
条件は p\equiv1 (mod 4 )でしたが、オイラーはこれがさらに
p=x^2+27y^2 \iff p\equiv1 (mod 3 )
であり、かつ2はpを法とする立方剰余
p=x^2+64y^2 \iff p\equiv1 (mod 4)
であり、かつ2はpを法とする4乗剰余
へと広がることを予想しました。
ガウスは平方剰余の相互法則の証明を完成させた後、結果を立方剰余と
4乗剰余へと拡張することにより、
この問題を解決しました。
その論文でガウスは
「双次残差の定理(平方剰余の相互法則)は、算術の分野が虚数に
拡張された場合にのみ、最大の単純さと真の美しさで輝く。」
と述べています。
ガウスは2次体と円分体を中心に研究しましたが、そこにとどまらず、
より一般的な法則を目指しました。つまり不定方程式が可解か否かを
代数的整数の理論を用いて判定しようとしました。ディリクレは
ガウスの理論の平易化に努めると同時に解析的整数論を創始し、
算術級数定理と類数公式に$L$関数を用いました。クンマーは円分体に
おける素因数分解の法則を究めて理想数を導入し、
それを用いて無限個のnに対してフェルマー予想が真である
ことを示しました。デデキントによるイデアルの概念の導入は
理想数のアイディアを平易化し、その後の数学的対象の構成の
模範にもなりました。イデアルの有効性の一端は、
例えば(1)と(2)の拡張である
不定方程式p=x^2+5y^2が可解\iff
p\equiv1,9 (mod 20)
が$\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}$
における$p$の素イデアル分解を使って示せるところにも現れています。
このような仕組みを一般の代数体へと拡げて理解することが
デデキント以後の整数論の大きな目標であり、そのためには
体の拡大というものについて詳しい理論が必要になりました。
その一例として予測されたものの中に、クロネッカーが58才のときに
デデキントに書いた手紙の一節にある
「クロネッカー青春の夢」があります。
468: 132人目の素数さん [] 2023/04/27(木)22:00 ID:VshyoKGM(4/6)
>>441
>オイラーはこれがさらに
>p=x^2+27y^2 \iff p\equiv1 (mod 3 )
>であり、かつ2はpを法とする立方剰余
小野孝氏の「オイラーの主題による変奏曲」か
付録のオイラーの「代数入門」の書かれたいきさつを思い出しました
https://www.アマゾン
オイラーの主題による変奏曲―二次形式,楕円曲線,ホップ写像 Tankobon Hardcover ? April 1, 1980
by 小野孝 (著)
付録でオイラーの「代数入門」の書かれたいきさつ
>ガウスは2次体と円分体を中心に研究しましたが、そこにとどまらず、
>より一般的な法則を目指しました。つまり不定方程式が可解か否かを
>代数的整数の理論を用いて判定しようとしました。ディリクレは
マンジュル・バルガヴァ氏のフィールズ賞を連想しました
全く詳しくなくて、フィールズ賞受賞の記事を読んだだけですが
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%B3%E3%82%B8%E3%83%A5%E3%83%AB%E3%83%BB%E3%83%90%E3%83%AB%E3%82%AC%E3%83%B4%E3%82%A1
マンジュル・バルガヴァ
業績
カール・フリードリヒ・ガウス以来200年もの間、2次形式の合成法則は知られていなかったが、バルガヴァによって新しく発見された(この業績によってクレイ研究賞を受賞)[1]。
>デデキントに書いた手紙の一節にある
>「クロネッカー青春の夢」があります。
高木先生の「近世数学史談」の続編を彷彿とさせます
2023年版ができるとうれしい
477(2): 132人目の素数さん [sage] 2023/04/28(金)07:28 ID:VYThBI7g(1/4)
>>441
は専門外なんだろうけど、ぱっと見中身がない
(他人が書いた数学史エピソードからの寄せ集め)
よく言えば再構成だが、おかしい箇所がある。
>クンマーは...無限個のnに対してフェルマー予想が真である
>ことを示しました。
とあるけど、たとえばn=3でフェルマー予想が真なら、n=6,9,...でも真だから
「無限個」に意味があるとすれば、nは素数としなければならない。
では、クンマーは無限個の素数nに対して予想が真であることを示したのか?
クンマーが証明できたのは、「nが正則素数の場合」という条件付であり
正則素数が無限に存在することは証明されていないのだから、クンマーが
「無限個の素数nに対して」示したというのは誤りだと思う。
478(3): 132人目の素数さん [sage] 2023/04/28(金)07:31 ID:VYThBI7g(2/4)
>体の拡大というものについて詳しい理論が必要になりました。
から
>「クロネッカー青春の夢」
への繋がりも何気におかしい。
必要になった「詳しい理論」とは一般相互法則を含む
代数体の一般理論であるとして
「クロネッカーの青春の夢」を一般の代数体に拡張する問題
→「ヒルベルトの第12問題」は現在においても未解決で
そんなものは代数体の基礎理論になりようがない
のだから、「クロネッカー青春の夢」について言及したのは
考えなしの素人が「言ってみたかっただけ」の
ようにも見える。
相互法則の証明に必要かどうかで言えば「必要ない」
それが高木らが示したことだが
ヴェイユ-谷山-志村 以降再度注目された
「クロネッカーの夢」とは、結局何を目指していたのか
ということを、>>441のような話の流れで説明するのは
適当ではない。
479: 132人目の素数さん [sage] 2023/04/28(金)07:34 ID:VYThBI7g(3/4)
だから、>>441は専門外の内容だとしても
「数学者にしては考えが浅いな」ということを露呈している。
なんでこんな文章(自家用だとしても)を自慢気に貼るのか分からない。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s