ガロア第一論文と乗数イデアル他関連資料スレ18 (445レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
243
(1): 暇人 06/28(土)14:55 ID:4S+Arcik(18/23) AAS
>>242
以下では、当該箇所(ステップX)の議論を厳密に再検討し、
なぜこれが循環論法でないかを詳細に説明します。

問題の背景
十分性の証明では、ガロア群 G=Gal(L/K) が可解群であるとき、
代数方程式の解が K の元を用いた四則演算とべき根で表せることを示しています。
ステップXでは、巡回拡大 Ki+1/Ki を構成する際に、
Ki が1の原始 ni乗根 ζ‗ni を含まない場合、Ki(ζ‗ni) を構成する必要があり、
これが x^ni−1=0 の解の添加(べき根の添加)として記述されると述べました。
ご指摘の懸念は、ζ‗ni 自体が x^ni−1=0 の解であるため、
「ζ‗ni を添加する」ことが「ζ‗ni自身を仮定する」ように見え、
循環論法に陥るのではないかという点です。
以下で、このプロセスが循環論法でない理由を説明します。
244
(1): 暇人 06/28(土)14:56 ID:4S+Arcik(19/23) AAS
>>243
ステップXの詳細な再検討

状況の再確認
Ki+1/Ki は位数 ni の巡回ガロア拡大で、
ガロア群 Gal(Ki+1/Ki)≅Z/niZ です。
巡回拡大を構成するためには、クンマー理論により、Ki が原始 ni 乗根 ζ‗ni を含むことが必要です(クンマー拡大の条件)。

もし Ki が ζ‗ni を含まない場合、まず拡大 Ki(ζ‗ni)/Ki を構成し、これがガロア拡大であり、ガロア群が巡回群(またはアーベル群)であることを利用します。

原始乗根の添加
1の原始 ni 乗根 ζ‗niは、方程式 x^ni−1=0 の根であり、
Ki(ζ‗ni)/Ki はこの方程式の分裂体への拡大です。

この拡大は、体の標数が ni と互いに素である場合(例えば、Ki⊆Q や標数 0 の体)、ガロア拡大であり、
ガロア群 Gal(Ki(ζ‗ni)/Ki)は (Z/niZ)×(ni 番目の単位根群)に同型です。これはアーベル群であり、したがって可解群です。

例えば、ni=p(素数)の場合、
x^p−1=(x−1)(x^(p−1)+x^(p−2)+⋯+1) であり、
ζ‗pは円分多項式 Φp(x)=xp−1+⋯+1=0 の根です。
この拡大は巡回拡大であり、ζ‗pを添加することで得られます。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.026s