ガロア第一論文と乗数イデアル他関連資料スレ18 (468レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
463
(1): 08/20(水)07:58 ID:RvFziny2(1/4) AAS
>>460
>こういう非現実的なことを信じて、おかしいと思わない点が
>統合失調症の症状だと言われてるんじゃないか?
これは君が知らないだけの話

>>461-462
本当オイラーの定数γの有理性の証明が得られるからγは有理数だといっている
γの有理性の論文が通ったら、私のことをトンデモなどとはいえなくなってしまうぞw
私はγが有理数か無理数かということだけを考えている訳ではない

もう、ここの相手するのが面倒臭くなってきた
464: 08/20(水)08:09 ID:RvFziny2(2/4) AAS
本当オイラーの定数γの有理性の証明が得られるから
→ 本当にオイラーの定数γの有理性の証明が得られるから
465: 08/20(水)08:33 ID:RvFziny2(3/4) AAS
このスレの時系列で見ると、>>460は後出しで結果論と書いているに過ぎない文章だ
同様に時系列で見れば、>>461-462も後出しで結果論として書いている文章の可能性がある
467
(1): 08/20(水)12:45 ID:RvFziny2(4/4) AAS
>>466
任意に正の整数nを取ったとき、級数
Σ _{k=0,1,2,…,+∞}(1/(2k+1)^{2n})
が超越数であることは、すぐ分かる
このように、正常な判断能力は持っている
だから、統失ではない

任意の a>−1 なる実数aに対して
γ(a,n)=1+1/2+…+1/n−log(n+a)
と定義する。このとき、すべての a>−1 なる実数aを同時に取って
非可算個の実数列 {γ(a,n)} a>−1 がすべて同時に収束する極限
γ=lim_{n→+∞}(γ(a,n)) の収束の様子を図示することは平面上では出来ない
仮に図示するとしたら、3次元空間で図示することになる
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.019s