純粋・応用数学・数学隣接分野(含むガロア理論)21 (275レス)
上下前次1-新
246: 08/28(木)20:04 ID:f2Ke/uCG(1) AAS
体系ってなに?
247: 08/28(木)20:53 ID:TYdOEijR(5/5) AAS
>>245
>整数の体系Aの中では正しいとも正しくないとも決定不能なある命題があったとして、
>その命題は元の整数の体系を含み実数も含むある体系Bの中では証明が出来るとする。
>そのとき元の整数の体系を含んでいる別の体系Cの中では決して反証されないのだろうか?
多分、それに対する回答に近い例が
下記 藤田 博司先生 超限順序数と連続体問題 2021 に記述あるよ
因みに、藤田 博司先生のPDFは 結構いい。私は結構おせわになって居ます (^^
(参考)
外部リンク:researchmap.jp
藤田 博司
省7
248(1): 08/29(金)01:52 ID:OeOWj3ng(1/2) AAS
体系とは、公理系など。
249: 数学科卒 08/29(金)07:38 ID:FTQwjfKe(1) AAS
>>245
> 整数の体系Aの中では正しいとも正しくないとも決定不能なある命題があったとして、
ゲーデルの不完全性定理によれば、Aが帰納的公理化可能であれば、決定不能な命題Gが存在します
> その命題は元の整数の体系を含み実数も含むある体系Bの中では証明が出来るとする。
上記の命題Gは、Gを公理としてAに追加した体系では、当然証明できます 公理ですから
> そのとき元の整数の体系を含んでいる別の体系Cの中では決して反証されないのだろうか?
上記の命題Gの否定命題¬Gを公理としてAに追加した体系では、当然反証されます
そもそもPがAで決定不能とは、Aの上では、Pからも¬Pからも矛盾が導けないということです
これまたゲーデルが証明した述語論理の完全性定理では、
体系Aのいかなるモデルでも真である命題はかならず証明できます
省7
250: 08/29(金)08:28 ID:GHf0Hyq9(1) AAS
>>245
そんなことは言えなくね?
というかその問い意味ある? あるなら意味教えて
251: 08/29(金)09:12 ID:8hn3mZ12(1) AAS
それを公理として付け加えた体系内では 証明されるし 反証はされない
252: 08/29(金)19:43 ID:OeOWj3ng(2/2) AAS
現実の場合に、体系Aの中では命題Gが決定不能かどうかをどうやって示すか。
もしかしたらAの中でGは証明できるのではないかといくら努力してみても証明できず、
Aの中でGの否定が証明できるのではないかといくら努力してみても証明できなかった
としても、そのことからだけでは決定不能であるとはいえない。
またAにGを公理として付け加えたBをつくれば、Bの中では命題Gは真理である、
と言われているが、実際にそれをやろうとするときに、
AにGを付け加えた体系Bが無矛盾になることをどうやって保証するのだろうか。
253(1): 08/30(土)23:03 ID:rNVoXQDS(1) AAS
円積問題(与えられた円と等しい面積の正方形を定規とコンパスを有限回
用いて作図せよ)が不可能であることは、おそらく初等幾何学の体系の中
側に留まっていては証明できないのではないか。もしもそうであるならば、
初等幾何学の範囲では決定不能なのではなかろうか?
立方体体積倍増問題(与えられた立方体の2倍の体積をもつ立方体を
初等作図で求めよ)の不可能性や、一般角の三等分問題(任意に与え
られた角の三等分角を初等作図で求めよ)の不可能性なども同様なの
ではないか?
フェルマーの大定理も実数や複素数を使わない初等整数論の範囲内で
は非自明解が存在しないことを証明することは出来ないのではあるま
省1
254(1): 08/31(日)06:34 ID:yvLlCc7F(1) AAS
>>253
円積問題、立方体体積倍増問題、一般角の三等分問題の不可能性は
初等幾何学と体論の対応関係から言える
これは初等幾何学に何か新たな公理を追加したわけではない
フェルマー予想の解決については知らないが
一般にZFCで解決不能な不定方程式は存在する
このことはヒルベルトの第10問題の
否定的解決の証明の系として導ける
255(1): 08/31(日)09:12 ID:b/3rxWWd(1) AAS
フェルマー予想がそうではないかという予想があったのは
1970年ごろ
256(1): 08/31(日)20:25 ID:lylF2dxQ(1/3) AAS
>>254-255
(引用開始)
フェルマー予想の解決については知らないが
一般にZFCで解決不能な不定方程式は存在する
このことはヒルベルトの第10問題の
否定的解決の証明の系として導ける
フェルマー予想がそうではないかという予想があったのは
1970年ごろ
(引用終り)
下記に類似記述がありますね
省15
257: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)20:34 ID:Q92KWSCo(1/9) AAS
低次元の脚元脚さばき。脚フェチ。
258: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)20:36 ID:Q92KWSCo(2/9) AAS
生物の進化は血脈が若いほど脚が重要。
259: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)20:38 ID:Q92KWSCo(3/9) AAS
目と脚と精神に障害があるのがラファエルという大天使なんだな。俺もまあまあな。
260(1): 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)20:40 ID:Q92KWSCo(4/9) AAS
色々の層をいろいろに埋めるのが現代的。
261: 現代数学の系譜 雑談 ◆yH25M02vWFhP 08/31(日)22:20 ID:lylF2dxQ(2/3) AAS
>>256 追加
>関さんの著書『グリーン・タオの定理』あとがきに詳しいことが書かれています。韓国の一般向け科学雑誌『数学東亜』でもこのエピソードが取り上げられました(文献 [東亜])。
<アマゾン>
グリーン・タオの定理 (朝倉数学ライブラリー) 単行本 – 2023/1/13
関 真一朗
「素数には任意の長さの等差数列が存在する」ことを示したグリーン・タオの定理を少ない前提知識で証明し,その先の展開を解説する。
〔内容〕等間隔に並ぶ素数/セメレディの定理/グリーン・タオの定理/ガウス素数星座定理/他。
朝倉書店 (2023/1/13)
堀川
5つ星のうち5.0 新しい整数論
省7
262: 現代数学の系譜 雑談 ◆yH25M02vWFhP 08/31(日)22:30 ID:lylF2dxQ(3/3) AAS
>>260
死狂幻調教大師S.A.D.@月と六ベンツ さん
いつもありがとうございます
>色々の層をいろいろに埋めるのが現代的。
そうそう
数理科学2025年9月号に 層の特集が・・(下記)
外部リンク:www.saiensu.co.jp
数理科学 2025年9月号 No.747
多彩な拡がりをもつ《層》の魅力
様々な数学概念の統一的理解に迫る
省43
263: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)22:51 ID:Q92KWSCo(5/9) AAS
超弦は今でも魅力があるな。しかし昔神々や精霊たちにほとんど抗えない世界で神が法則を決定しうるのはおかしいよ。自然科学的な機構環境にも医師や偏りがあった点を見落としている。最初の神は何を見たのだろう。それは死を。神は死神なんだよ。最初の神の系譜が一番能力が高いはずだ。原子数学による1。死はゼロに近い。
264: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)22:51 ID:Q92KWSCo(6/9) AAS
気候。
265: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)22:52 ID:Q92KWSCo(7/9) AAS
誤変換なのかなという。
266: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)22:58 ID:Q92KWSCo(8/9) AAS
超越的な弦があるのなら、放つ矢の方はどうだろうか。そこまで描けてないんだな。俺の最高級の 1 本の弓と矢がまたガルーダの0をもたらしたようには。
267: 死狂幻調教大師S.A.D.@月と六ベンツ 08/31(日)23:00 ID:Q92KWSCo(9/9) AAS
そして俺も0に近づいた。1と0の間が大事。それは冷静と情熱の間どころではない。カラフル。
268: 09/01(月)14:11 ID:zmHc7PUM(1) AAS
一般の不定方程式の整数解を求めるアルゴリズムが存在しないことは、
ある特定の不定方程式の整数解を求めるアルゴリズムが無いことを意味しない。
また、ある特定の不定方程式の整数解を求めるアルゴリズムが無いからといって、
その不定方程式に整数解があることを否定できるわけではない。
269: 09/01(月)20:17 ID:jdwb2o0+(1) AAS
一定の特異点の解消を求めるアルゴリズムがないことは
ある特定の特異点の解消を求めるアルゴリズムが
存在しないことを意味しない
270: 09/01(月)20:38 ID:F+DthgMd(1) AAS
整数解があるなら、手あたり次第試せば、いつか見つかるけど
整数解がない場合は、いくらやっても見つからないが、
整数の組は無数にあるから、手あたり次第試してたら終わらない
271(1): 09/02(火)22:43 ID:vgyzZwMc(1) AAS
初等幾何の枠組みに座標を入れて解析幾何・代数幾何の中に埋め込んで、
そのように拡大された体系の中でも解法が無いことを示せれば、
拡大される前の体系の中でも解法が無いという理屈になるのだろうな。
なぜならば、拡大前の体系の中で解法があったとすれば、
拡大後の体系の中からみても解法があるはずだから。
しかし拡大前の体系の中で解法がなかったとしても、
拡大後の体系の中には解法があるのかもしれない、そうして
その解法は拡大前の体系の中では実施できないものだと。
272: 現代数学の系譜 雑談 ◆yH25M02vWFhP 09/03(水)09:58 ID:hNzKNOFY(1/3) AAS
これいいね
外部リンク:japan.cnet.com
AIが嘘をつく理由は「あなたがそれを求めているから」
Macy Meyer (CNET News) 編集部20250901
プリンストン大学の新しい研究によれば、AIが持つご機嫌取りの性質には大きな代償が伴うという。これらのシステムは普及につれて、真実を無視する傾向が強まっている
ここ数カ月、われわれはAIが偏見を持つ可能性や、精神病を引き起こす可能性さえあることを目の当たりにしてきた。「OpenAI」の「GPT-4o」モデルをきっかけに、AIチャットボットがすぐにユーザーに追従したり、同意したりするAIの「へつらい(sycophancy)」が話題になった。しかし今回、研究者らが「機械のデタラメ(machine bullshit)」と呼ぶこの特定の現象は、それとは異なるものだ
「幻覚やへつらいは、LLMに共通して見られる、広範囲にわたる体系的な不誠実な行動を十分に捉えてはいない」と、プリンストン大学の研究者らは述べている。「例えば、部分的な真実や曖昧な言葉遣い(ごまかしや逃げ口上など)を使った回答は、幻覚でもへつらいでもなく、デタラメの概念と密接に一致する」
AIは嘘をつくことをどのように学ぶのか?
AI言語モデルがどのようにしてユーザーに迎合するようになるかを理解するには、LLMがどのように訓練されているかを理解する必要がある
LLMの訓練には、3つのフェーズがある
省7
273: 09/03(水)11:11 ID:hNzKNOFY(2/3) AAS
>>271
1)初等幾何:下記のギリシアの3大作図問題ですね
2)”拡大された体系の中でも解法が”は、下記の「射影幾何の考えかた逆井卓也」ご参照
射影幾何、射影座標で考えることで ユークリッド幾何学内で考えるよりスッキリ
3)同様に、常微分方程式あるいは偏微分方程式の弱解の話
解の範囲を広げて ”はじめに弱解の存在を示し、その後にその解が実際に十分滑らかであることを示す、という方法がしばしば有用となる”
他に、代数方程式の解で たとえ実係数であっても その根の範囲を複素数まで広げる方が
スッキリ扱えるがごとし
(参考)
外部リンク:www.nli-research.co.jp
省19
274: 09/03(水)11:11 ID:hNzKNOFY(3/3) AAS
つづき
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
射影幾何の考えかた逆井卓也∗ 2023 年10月9日
(∗東京大学大学院数理科学研究科.令和5年度群馬県高校生数学キャンプ「2次曲線」における講演)
P7
4 デザルグの定理この節ではデザルグの定理と呼ばれる有名な定理の紹介をします。この定理は通常の平面幾何の定理となっていますが、射影幾何の本質を突くものとなっています。デザルグ(Girard Desargues, 1591–1661)は 17 世紀の建築家・数学者で、まさに透視図法の研究をしていました。
P17
定理8.1 射影平面の任意の射影直線に対してうまく射影変換を行うと、その射影直線を無限遠直線にうつすことができる。また、楕円、放物線、双曲線はどれも射影変換によって単位円にうつすことができる。
という事実があります。この性質は射影幾何に関する定理の証明をしばしば簡単な場合へと帰着させます。
外部リンク:ja.wikipedia.org
省5
275: 09/03(水)11:22 ID:48VLeQ/z(1) AAS
>代数方程式の解で たとえ実係数であっても
>その根の範囲を複素数まで広げる方がスッキリ扱えるがごとし
大学1年の一般教養の数学で落第した数学童貞が
「ボク、数学全部わかるもん」と5chで自慢
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.617s*