ガロア第一論文と乗数イデアル他関連資料スレ18 (497レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
226
(4): 暇人 06/28(土)08:36 ID:4S+Arcik(4/23) AAS
>>225
ステップ1:巡回拡大の構造

まず、ガロア群 Gi/Gi+1 が巡回群である拡大 Ki+1/Ki を考えます。
巡回群の位数を ni=∣Gi/Gi+1∣ とし、Ki が1の原始 ni 乗根を含むと仮定します
(必要に応じて、原始根を添加した拡大を別途考える)。

補題(巡回拡大のべき根表示):
Ki+1/Ki が位数 ni の巡回ガロア拡大であるとき、
省12
227
(4): 暇人 06/28(土)08:37 ID:4S+Arcik(5/23) AAS
>>226
ステップ2:拡大の連鎖

正規系列 G0⊵G1⊵⋯⊵Gm={e} に沿って、体の拡大 K=K0⊆K1⊆⋯⊆Km=L を構築する。
各ステップ Ki+1/Ki は、ステップ1により、べき根の添加(および必要に応じて原始根の添加)で構成できる。
最終的に、L=Km は K から有限回のべき根の添加で得られる。
229
(2): 暇人 06/28(土)08:41 ID:4S+Arcik(7/23) AAS
>>225
補足:原始根の添加
(注:ここの箇所はGrokの文章を修正している
修正点1:元の文ではステップ1と2の間にこの文章があったのを補足として後ろにもってきた
修正点2:方程式x^ni−1を(x^ni−1)/(x-1)に修正
修正点3:元の文は「ζ_ni は方程式 …の解として得られる。(これはべき根の追加)」で終わっているが
このままだと循環論法なので、以下文章を追加した)
省8
234
(1): 暇人 06/28(土)08:47 ID:4S+Arcik(12/23) AAS
>>224

結論
十分性:>>225-229 ガロア群 Gal(L/K) が可解群ならば、解は四則演算とべき根で表せる。これは、正規系列に沿った巡回拡大がべき根の添加で構成できるため。
必要性:>>230-232 解が四則演算とべき根で表せるならば、ガロア群は可解群である。これは、べき根の添加による拡大のガロア群が可解であるため。

よって、定理が証明された。
271: 暇人 06/29(日)15:57 ID:gukAFALT(4/12) AAS
>>257
>n次の代数方程式のガロア群を論じるときに
>いま、簡便に係数を有理数体Qに取るとして、Qに対して
> 「必要なだけの 1のn乗根 が 添加されている」とする立場と
>そうでない立場の2つの流儀があるのです
>前者の立場では、n次の代数方程式のガロア群を論じるときに
>2項方程式 x^k=a のガロア群(a正でa≠1、k≧2)の扱いが
省24
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s