大学数学の質問スレ Part1 (655レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
569: 12/11(木)16:56 ID:K3Iy8nk/(1/4) AAS
笠原さんの『新装改版微分積分学』の定理1.36の証明って間違っていますよね?

定本解析概論のp.35練習問題(1)の(6)を解いた後に同じようなことが笠原さんの本に出ていたのを思い出して確認してみました。

誤りがあるのは、有界集合 A で一様連続な関数 f を closure(A) で連続な関数に一意的に拡張できるという定理の証明です。
まず指摘したいのが A は有界でなくてもいいということです。ここがまずおかしいですね。

次に、 A の元でない点 a ∈ closure(A) をとり、 a での f の値を定義しています。これは問題ありません。
次に、 f が a で連続であると書いていますが、笠原さんが示したことは、 A ∪ {a} 上の関数 f が a で連続であるということだけです。
示したいことは、 f が closure(A) で連続であることです。
572
(1): 12/11(木)19:53 ID:K3Iy8nk/(2/4) AAS
>次に、 f が a で連続であると書いていますが、笠原さんが示したことは、 A ∪ {a} 上の関数 f が a で連続であるということだけです。
示したいことは、 f が closure(A) で連続であることです。

amazonのレビュアーにsusumukuniという人がいますが、この人もこのことを指摘していません。

なぜ、誰もこの欠陥に気づかなかったのでしょうか?新装改版でも修正されていません。50年以上誰も気づかなかったということですね。
574: 12/11(木)20:47 ID:K3Iy8nk/(3/4) AAS
高木貞治著『定本解析概論』のp.35練習問題(1)の(6)解答を以下に示します:

f : [a, b] ∩ Q → R を一様連続な関数とする。
f は [a, b] において連続な関数 g に拡張できる。

証明:
x ∈ [a, b] ∩ (R - Q) とする。
Q の稠密性により、 x は [a, b] ∩ Q の集積点であるから、 [a, b] ∩ Q の点列 {x_n} で x に収束するようなものが存在する。
ε を任意の正の実数とする。f は一様連続であるから、正の実数 δ で、
省9
575: 12/11(木)20:47 ID:K3Iy8nk/(4/4) AAS
g が連続であることを以下で示す。

(1) x ∈ [a, b] ∩ Q とする。
y ∈ (x - δ, x + δ) ∩ [a, b] ∩ Q とする。
x, y ∈ [a, b] ∩ Q であるから、 |g(y) - g(x)| < ε/3 < ε である。

y ∈ (x - δ, x + δ) ∩ [a, b] ∩ (R - Q) とする。
[a, b] ∩ Q の点列 {y_n} で y に収束するようなものが存在する。
y_n ∈ (x - δ, x + δ) ∩ [a, b] ∩ Q かつ |g(y_n) - g(y)| < ε/3 を満たす n が存在する。
省13
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.020s