雑談はここに書け!【67】 (511レス)
上下前次1-新
抽出解除 レス栞
422(2): 09/28(日)21:20 ID:zxZXlCIa(9/10) AAS
そもそも有理数と無理数の違いからして誤解している。
ある有理数にいくらでも近づいていく別の有理数の無限列は存在しない?
そんなわけあるか。では、有理数と無理数の違いはどこにあるか?
たとえば、有理数 a/cを別の有理数の無限列 b_i/d_i (i=1,2,...)
で近似することを考える。
このとき、|a/c-b/d|=|(ad-bc)/(cd)|であり、|ad-bc|≧1だから
|a/c-b/d|≧1/|cd|. ここでcは定数だから、b_i/d_iが動くとき
省9
429(1): 09/29(月)11:47 ID:Xm+bk6Ry(1/9) AAS
>>422-423
πは π=[3,7,15,1,…] と無限正則連分数の形で表され、
πについて、どんな正の整数kに対しても
第k次の近似分数 (q_k)/(p_k) と4は等しくはならないから、
正則連分数の性質から、少なくとも π^π の議論では
無限正則連分数の第k次の近似分数の議論は関係ない
π^π の議論を一般化しようとすると話は別だろうが
444: 10/02(木)00:56 ID:07eKl1iA(1/2) AAS
>>422の前半に書いたことを、命題の形で書くと
次のようになる。「良い近似分数列」とは、正確には
この命題の条件をみたす分数列 q_iのことである。
命題
有理数の無限列 q_i(i=1,2,...)がある値αに収束し
かつ、その値はq_iとは交わらない、すなわち
αはq_iのどの元とも異なるとする。
省7
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.171s*