雑談はここに書け!【67】 (510レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
299(8): 09/16(火)10:44 ID:tjOKtzTb(1) AAS
示せた人は?
319(3): 09/18(木)21:55 ID:iuntxIEF(1) AAS
>>316
超越性は?
380(3): 09/25(木)17:24 ID:ABGVOhvU(1/7) AAS
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの π=2Σ _{k^-0,1,…,+∞}(((2k−1)!!)/((2k+1)((2k)!!)) なる
有理級数表示に注意すれば、無理数πに収束する単調増加な有理数列は存在する
省16
401(3): 09/28(日)17:47 ID:fvkQNaSZ(1/13) AAS
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの
π=4Σ _{k=0,1,…,+∞}(((‐1)^k)/(2k+1))
省5
402(4): 09/28(日)17:49 ID:fvkQNaSZ(2/13) AAS
π<a<M(π)=4 なる有理数aを任意に取る
有理数列 {b_n} ∀b_n<M(π)=4 は無理数πに収束し
各項が正なる単調減少列であるから、π<a<M(π)=4 なる
有理数aに対して或る正の整数 N(a) が存在して、
有理数列 {b_n} ∀b_n<N(a) の第n項について n≧N(a) のとき π<b_n<a である
正の整数nを任意に取れば、nに対して定義される
実数列 {b_n} の第n項 b_n 、第n+1項 b_{n+1}は両方共に有理数だから、
省8
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s