雑談はここに書け!【67】 (579レス)
上下前次1-新
422(2): 09/28(日)21:20 ID:zxZXlCIa(9/10) AAS
そもそも有理数と無理数の違いからして誤解している。
ある有理数にいくらでも近づいていく別の有理数の無限列は存在しない?
そんなわけあるか。では、有理数と無理数の違いはどこにあるか?
たとえば、有理数 a/cを別の有理数の無限列 b_i/d_i (i=1,2,...)
で近似することを考える。
このとき、|a/c-b/d|=|(ad-bc)/(cd)|であり、|ad-bc|≧1だから
|a/c-b/d|≧1/|cd|. ここでcは定数だから、b_i/d_iが動くとき
この値は、(定数)/d_iより小さくはならない。
そして、この性質が有理数と無理数の違いをもたらす。
ある有理数を別の有理数列で近似したときは
どうやっても(定数)×(近似分数の分母の逆数)
よりも良い近似は得られない。逆に、分数の無限列が
この限界を超えて良い近似をもたらすなら、その極限は無理数であることになる。
これは無理数であるための十分条件であるが、ディリクレの抽斗論法
を用いれば、このような「良い近似分数列が存在すること」が無理数であるための
必要条件であることも証明できる。
上下前次1-新書関写板覧索設栞歴
あと 157 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.005s