[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
553
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/23(木)21:16 ID:y/IThbaj(4/6) AAS
>>545
(引用開始)
>>318
>なんで、必ずある順序数が上限として存在るするといえるのか、わからんから
うん、俺もその辺だいぶ悩んだ
自分では解決できたと思ってるが、正しいかは分からん
(引用終り)
省21
554: 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/23(木)21:19 ID:y/IThbaj(5/6) AAS
>>553 タイポ訂正

それはとこかく、いま Jechの証明 の任意集合Aが、ある集合の濃度を持つとしよう(ZFC内ではね)
 ↓
それはともかく、いま Jechの証明 の任意集合Aが、ある集合の濃度を持つとしよう(ZFC内ではね)
557
(2): 01/24(金)03:50 ID:knZwyXgJ(1) AAS
>>553
> いま Jechの証明 の任意集合Aが、ある集合の濃度を持つとしよう(ZFC内ではね)
 それ、論点先取
 問われてるのは、まさにある集合の濃度を持つかどうかだから
> そうすると、その濃度から決まる 順序数の上限が存在することが言えるだろう
> それは、任意集合Aの冪集合の濃度を超えない
> つまり、任意集合Aの冪集合の濃度によって押えられる
省2
583
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/25(土)09:00 ID:vKwDmbNO(2/11) AAS
>>580
うーん

(引用開始)
>>557 ID:knZwyXgJ さん
>>553
> いま Jechの証明 の任意集合Aが、ある集合の濃度を持つとしよう(ZFC内ではね)
 それ、論点先取
省35
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.051s