[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
236(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/13(月)18:15 ID:xSRlEtRO(10/17) AAS
つづき
Notes et références
3.Pour d'autres énoncés équivalents à ACω, voir (en) Horst Herrlich, « Choice principles in elementary topology and analysis », Comment. Math. Univ. Carolinae, vol. 38, no 3, 1997, p. 545-552 (lire en ligne [archive]) et (en) Paul Howard et Jean E. Rubin, Consequences of the Axiom of Choice, Providence, R.I., AMS, 1998.
archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf
Comment.Math.Univ.Carolin. 38,3(1997)545–552 545
Choice principles in elementary topology and analysis Horst Herrlich
1. In the realm of the reals
省28
239(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/13(月)19:08 ID:xSRlEtRO(11/17) AAS
>>235-236より
1)可算選択の公理なしで、コーシー列の収束が言えることと
上記 fr.wikipedia 可算選択公理における下記の記述とは、矛盾しない と思う
”Theorem 1.1 ([15], [29], [30]). Equivalent are:
1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,
2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x,
3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous,
省17
270(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/14(火)17:22 ID:rO5NkXOo(3/3) AAS
>>267
(引用開始)
>つまり、整列可能定理は公理として、有理コーシー列で有理数Qの完備化を可能として
>無理数(超越数を含む)の存在を保証する
は君の発言だよね? 食言ってことは、未だに間違いって理解してないってこと?
(引用終り)
では、下記の通り 微修正をします ;p)
省26
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.060s