[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ12 http://rio2016.5ch.net/test/read.cgi/math/1735693028/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
526: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/23(木) 11:46:37.79 ID:OWxAi42s >>524-525 >左側はfの反復によって決まるので >fの定義の前には決まらない >だからfに先立って反復に現れる集合の全体を決めるのは循環論法 言っている意味がわからんw ;p) 下記の 東北大 尾畑研 第13章 整列集合 定理13.18 (超限帰納法) 百回音読してねw ;p) その上で、いま 選択公理だけで >>510 Jech, Thomas (2002).の A∖{aξ∣ξ<α} が定義できれば 順序数 ξ<α の (超限帰納法)で、 『超限帰納法は証明だけではなく定義にも用いられる たとえば整列集合を定義域とする写像f(x)を{f(y)|y≺x}を用いて定義する手法がある』 ってこと これでしょ? ここで、 繰り返すが 選択公理だけで(整列可能定理を使わず) 尾畑研 定理13.18 (超限帰納法) に持ち込めば A∖{aξ∣ξ<α} が定義できて 選択関数 aα= f(A∖{aξ∣ξ<α}) ができあがる■ (参考) www.math.is.tohoku.ac.jp/~obata/student/subject/ 東北大 尾畑研 www.math.is.tohoku.ac.jp/~obata/student/subject/TaikeiBook/Taikei-Book_13.pdf TAIKEI-BOOK : 2019/1/1(22:21) 東北大 尾畑研 第13章 整列集合 定理13.18 (超限帰納法) 略す ふつうの数学的帰納法は超限帰納法の整列集合Xとして自然数Nをとったものである また超限帰納法は証明だけではなく定義にも用いられる たとえば整列集合を定義域とする写像f(x)を{f(y)|y≺x}を用いて定義する手法がある これを再帰的定義または帰納的定義という ここで正確な主張を述べるのは難しいが X=Nの場合は第15.2節で扱う http://rio2016.5ch.net/test/read.cgi/math/1735693028/526
527: 132人目の素数さん [sage] 2025/01/23(木) 13:06:59.50 ID:L43wzm6S >>526 >言っている意味がわからん すぐわかんなくなっちゃうんだね http://rio2016.5ch.net/test/read.cgi/math/1735693028/527
528: 132人目の素数さん [sage] 2025/01/23(木) 13:08:53.79 ID:L43wzm6S >>526 >いま 選択公理だけで・・・定義できれば アウト http://rio2016.5ch.net/test/read.cgi/math/1735693028/528
572: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/24(金) 15:13:58.53 ID:BCvEAUed >>526 追加 (引用開始) www.math.is.tohoku.ac.jp/~obata/student/subject/TaikeiBook/Taikei-Book_13.pdf TAIKEI-BOOK : 2019/1/1(22:21) 東北大 尾畑研 第13章 整列集合 定理13.18 (超限帰納法) 略す ふつうの数学的帰納法は超限帰納法の整列集合Xとして自然数Nをとったものである また超限帰納法は証明だけではなく定義にも用いられる たとえば整列集合を定義域とする写像f(x)を{f(y)|y≺x}を用いて定義する手法がある これを再帰的定義または帰納的定義という ここで正確な主張を述べるのは難しいが X=Nの場合は第15.2節で扱う (引用終り) 下記の近藤友祐 集合論ノート0003 「整礎クラス上の超限帰納法と超限再帰法」 が参考になるだろう なお、近藤友祐氏は、神戸大学 工学部出身らしい だれか、「工学部では、数学の難しいことを教えないだろう」とか、テメエのレベルも省みず宣うやつがいるが だれが見ても、おサルより>>7-10 近藤友祐氏のレベルが上でしょw ;p) (参考) https://elecello.com/ 近藤友祐 2014 年 神戸大学 工学部 電気電子工学科 入学 (2011 年 11 月 03 日 第 12 回 日本数学コンクール論文賞 銀賞 受賞 神戸大学数学研究会 POMB で代表を務めたり 略 していました) https://elecello.com/doc/set/set0003.pdf 集合論ノート0003 整礎クラス上の超限帰納法と超限再帰法 近藤友祐 初稿: 2017/09/05 整礎クラス上の超限帰納法と超限再帰法について述べる. 例えば,ONは整列クラスゆえに整礎クラスだから,ON上の超限帰納法や超限再帰法が正当化される.また,メタ数学的な注意を払った上で,整礎集合や整列集合上の超限帰納法や超限再帰法も正当化される. 整礎クラスに対する超限帰納法の証明の中で,推移的閉包を構成する.この構成は,自然数上の再帰によって行われる.超限再帰法を根拠づけるのに再帰を用いるのは循環論法ではないか?と思われるが,事前に順序数論を展開し,自然数全体を有限順序数全体として定義しておくと,の上で帰納法,再帰法が使えることがわかる. http://rio2016.5ch.net/test/read.cgi/math/1735693028/572
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.043s