[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ12 http://rio2016.5ch.net/test/read.cgi/math/1735693028/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
270: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/14(火) 17:22:40.20 ID:rO5NkXOo >>267 (引用開始) >つまり、整列可能定理は公理として、有理コーシー列で有理数Qの完備化を可能として >無理数(超越数を含む)の存在を保証する は君の発言だよね? 食言ってことは、未だに間違いって理解してないってこと? (引用終り) では、下記の通り 微修正をします ;p) つまり、整列可能定理は公理として、有理コーシー列で有理数Qの完備化を可能として ↓ つまり、整列可能定理は公理として、x∈R subset A⊂R で 有理コーシー列 a sequence in A\{x} that converges to x で有理数Qの完備化を可能として(但し、RをcompactにするためDCを使用>>261) (参考) >>236より下記(Equivalent are:1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, & 9. the Axiom of Choice for countable collections of subsets of R.) archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R −→ R is continuous iff it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X −→ R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1. http://rio2016.5ch.net/test/read.cgi/math/1735693028/270
271: 132人目の素数さん [] 2025/01/14(火) 17:38:21.66 ID:M9OrezAK >>270 >x∈R subset A⊂R で 有理コーシー列 a sequence in A\{x} that converges to x で有理数Qの完備化を可能として Rとは? 実数全体の集合? 有理数Qを完備化するにあたってRの存在を前提としてるの?w http://rio2016.5ch.net/test/read.cgi/math/1735693028/271
272: 132人目の素数さん [] 2025/01/14(火) 17:44:55.26 ID:M9OrezAK >>270 >整列可能定理は公理として 整列可能定理無しでは有理数Qの完備化は不可能 が君の主張との理解でよろしい? http://rio2016.5ch.net/test/read.cgi/math/1735693028/272
284: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/15(水) 14:46:46.51 ID:ZCTGHyhi >>270 >Choice principles in elementary topology and analysis Horst Herrlich Horst Herrlichは、下記か 大物ですな (^^ (参考) en.wikipedia.org/wiki/Horst_Herrlich Horst Herrlich (11 September 1937, in Berlin – 13 March 2015, in Bremen) was a German mathematician, known as a pioneer of categorical topology. Education and career From 1971 to 2002 Herrlich was a professor of mathematics with a focus on general topology and category theory at the University of Bremen. He was an Invited Speaker of the International Congress of Mathematicians in 1974 in Vancouver.[4] He is regarded as a founder of categorical topology, which deals with general topology using the methods of category theory. books.google.co.jp/books?id=_0cDCAAAQBAJ&redir_esc=y Axiom of Choice 前表紙 Horst Herrlich Springer, 2006/07/21 - 198 ページ AC, the axiom of choice, because of its non-constructive character, is the most controversial mathematical axiom, shunned by some, used indiscriminately by others. This treatise shows paradigmatically that: - Disasters happen without AC: Many fundamental mathematical results fail (being equivalent in ZF to AC or to some weak form of AC). - Disasters happen with AC: Many undesirable mathematical monsters are being created (e.g., non measurable sets and undeterminate games). - Some beautiful mathematical theorems hold only if AC is replaced by some alternative axiom, contradicting AC (e.g., by AD, the axiom of determinateness). Illuminating examples are drawn from diverse areas of mathematics, particularly from general topology, but also from algebra, order theory, elementary analysis, measure theory, game theory, and graph theory. http://rio2016.5ch.net/test/read.cgi/math/1735693028/284
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s