[過去ログ]
スレタイ 箱入り無数目を語る部屋27(あほ二人の”アナグマの姿焼き”w) (1002レス)
スレタイ 箱入り無数目を語る部屋27(あほ二人の”アナグマの姿焼き”w) http://rio2016.5ch.net/test/read.cgi/math/1731325608/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
6: 132人目の素数さん [] 2024/11/11(月) 20:49:28.37 ID:xGTnxzX9 つづき だめなのは、時枝記事だ。まあ、題名はおちゃらけだが、もっとはっきり、数学パズルとした方がよかったろう 非可測で、ヴィタリに言及しているのが、ミスリードだ Hart氏の”A similar result, but now without using the Axiom of Choice.GAME2”のように、選択公理不使用のGAME2があるから、 ソロヴェイの定理(下記 wikipedia ご参照)から、ヴィタリのような非可測は否定される conglomerabilityか、あるいは総和ないし積分が発散する非正規な分布により、可測性が保証されないと考えるべき 時枝氏は、確率変数の無限族の独立性が理解できていないのも痛いね https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 ヴィタリ集合が存在し、それらの存在は選択公理の仮定の下で示される。1970年にロバート・ソロヴェイ(英語版)は、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデルを構築した[2]。 https://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%AD%E3%83%B4%E3%82%A7%E3%82%A4%E3%83%A2%E3%83%87%E3%83%AB ソロヴェイモデル ソロヴェイモデルはロバート M. ソロヴェイ (1970)によって構成されたモデルでツェルメロ=フレンケル集合論 (ZF) の全ての公理が成り立ち、選択公理を除去し、実数の集合が全てルベーグ可測であるようにしたものである。この構成は到達不能基数の存在に依拠している。 これによってソロヴェイはルベーグ不可測集合の存在をZFC (ZF+選択公理) から証明するには、少なくとも到達不能基数の存在がZFCと矛盾しない限り、選択公理が本質的に必要であることを示した。 ステートメント DC は従属選択公理の略記とする。 ソロヴェイの定理は次のことである。 到達不能基数の存在を仮定する。このとき、適切な強制拡大 V[G] の ZF+DC の内部モデルであって、実数のいかなる集合も全て、ルベーグ可測であって perfect set property を満たしベールの性質を満たすというモデルがある。 構成 ソロヴェイはそのモデルを二つのステップによって構成した。まず初めに、到達不能基数 κ を含む ZFC のモデル M から始める。 最初のステップでは M のレヴィ崩壊 M[G] を取る。 略 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1731325608/6
767: 132人目の素数さん [sage] 2024/12/26(木) 10:44:02.57 ID:Gp0Kjikg >>761 (引用開始) その上で、そもそも出題の分布が示されてないから 回答者の列選択との独立性など示せない、というのはわかるが、 それなら両者が独立だと前提すればいいだけのことであって 逆に、出題の分布がいかなるものであっても、 回答者の列選択と独立足りえないなど示せない筈 (引用終り) ふっふ、ほっほ ・そもそも、確率計算に使ってはいけない分布が存在するよw ・それは、非可測集合(>>6 ヴィタリ集合)による分布と、非正則分布(全事象が発散しているなど)>>8 ・非可測集合は、下記 Third axiom σ-additivityで排除される ・非正則分布(全事象が発散しているなど)は、Second axiom ”P(Ω)=1”を満たすことができず排除される ・このように、そもそも排除されるべき集合と測度を使う 確率計算は、エセ数学確率計算です!w ;p) (参考) ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E3%81%AE%E5%85%AC%E7%90%86 確率の公理 https://en.wikipedia.org/wiki/Probability_axioms Probability axioms Second axiom This is the assumption of unit measure: that the probability that at least one of the elementary events in the entire sample space will occur is 1. P(Ω)=1 Third axiom This is the assumption of σ-additivity http://rio2016.5ch.net/test/read.cgi/math/1731325608/767
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.025s