[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ11 http://rio2016.5ch.net/test/read.cgi/math/1724969804/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
968: 132人目の素数さん [] 2025/01/03(金) 16:55:16.03 ID:SOzf52p+ >>911 整列定理を 「任意の集合は二項関係∈で整列できる」 と”誤解”してる人がいるんだ へぇ〜 >”{}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・” >という可算無限の整列の1列を作ることができる >そして、ここで 整列定理の力を借りると >”{}<{{}}<{{{}}}<{{{{}}}}∈・・・” >と読み替えることが可能なんだよ ∈と<は違うんじゃない? {}<{{{}}} だけど {}∈{{{}}} ではないから そもそも {},{{}},{{{}}},…という列に 整列順序<を入れるのに 整列定理なんて使わなくていいんだけどな 言ってる意味、分かる? http://rio2016.5ch.net/test/read.cgi/math/1724969804/968
970: 132人目の素数さん [] 2025/01/03(金) 17:47:30.91 ID:EOvn/AW5 >>968-969 >整列定理を >「任意の集合は二項関係∈で整列できる」 >と”誤解”してる人がいるんだ 誤解しているのは君だよ 下記の尾畑研 ”13.3 整列可能定理”を百回音読してね さて 例えば、有限集合{0,1,2,3,4,5,6,7,8,9} を考えると 標準は、(0,1,2,3,4,5,6,7,8,9)の並びだが 整列可能定理で、(8,5,0,1,2,6,3,4,7,9)等として、これが整列順序だと宣言することは可能だ 整列順序の定義? 見ての通りです そのままが、整列順序の定義です 場合の数として、10!通り 可能です さらに これを、可算無限集合の自然数Nにでも同じことができるというのが、整列可能定理です だから、”{}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・”という整列順序を 整列可能定理で 作ったと解釈してください。整列可能定理でね それで、議論は終りです >∈'の定義は必ず書いてね デフォルト !! デフォルトという言葉をご存知ですか? 下記の尾畑研 第13章 整列集合 PDF内に例示があります 百回音読してね そうすれば、”デフォルト”だと理解できるよ (参考)>>920より再録 www.math.is.tohoku.ac.jp/~obata/student/subject/ 尾畑研究室 東北大 「集合・写像・数の体系 数学リテラシーとして」の草稿(pdf) www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-13_WellOrdered.pdf GAIRON-book : 2018/6/21 第13章 整列集合 13.3 整列可能定理 与えられた集合に適当な順序を定義して整列集合にできるだろうか 直感的には集合の元を1つずつ順に並べればよいわけで 有限集合に対してなら何ら問題なくできる しかし無限集合に対してはどうだろうか カントルはできると予想しツェルメロが証明を与えた1) 実際ツェルメロは選択公理から整列可能定理を導いたがここではツォルンの補題を用いて証明しよう2) 定理13.15 (整列可能定理) 任意の集合は適当な順序を定義することで整列集合にできる 証明 Xを任意の集合とする 以下略す http://rio2016.5ch.net/test/read.cgi/math/1724969804/970
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s