[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ11 http://rio2016.5ch.net/test/read.cgi/math/1724969804/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
962: 132人目の素数さん [] 2025/01/02(木) 10:35:58.05 ID:m+OftNCd 大事な所だけもう一度言う。 整列定理からは如何なる具体的整列順序も出ない。よって「整列定理を用いて」は大間違い。 それ以外はゴミのような間違いなので繰り返さない。 http://rio2016.5ch.net/test/read.cgi/math/1724969804/962
963: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/02(木) 19:12:50.26 ID:Zl89R8aT >>962 >大事な所だけもう一度言う。 >整列定理からは如何なる具体的整列順序も出ない。よって「整列定理を用いて」は大間違い。 整列定理については、下記 尾畑研究室 東北大 整列可能定理を音読してね その上で、おれも言っておくが ・整列可能定理は、一階述語論理では選択公理と同値と言われる ・つまり、その本質は 整列可能”公理”である ・そもそも公理は、具体的な色がついていない ・具体的な色がついていないから、いろんな場面で万能に使えるってこと ・その上で、具体的な色がついていないけれど、数学者が工夫して 色を付けることを妨げない ・そうでなければ、公理として役に立たない (参考)>>920より再録 www.math.is.tohoku.ac.jp/~obata/student/subject/ 尾畑研究室 東北大 「集合・写像・数の体系 数学リテラシーとして」の草稿(pdf) www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-13_WellOrdered.pdf GAIRON-book : 2018/6/21 第13章 整列集合 13.1 整列集合 順序集合(X,≦)はすべての空でない部分集合が最小元をもつとき整列集合であるといいそのような順序を整列順序という 13.2整列集合の基本定理 本節では整列集合がつ与えられたときどちらか一方は他方を延長したものであるという基本定理を証明する 13.3 整列可能定理 与えられた集合に適当な順序を定義して整列集合にできるだろうか 直感的には集合の元を1つずつ順に並べればよいわけで 有限集合に対してなら何ら問題なくできる しかし無限集合に対してはどうだろうか カントルはできると予想しツェルメロが証明を与えた1) 実際ツェルメロは選択公理から整列可能定理を導いたがここではツォルンの補題を用いて証明しよう2) 定理13.15 (整列可能定理) 任意の集合は適当な順序を定義することで整列集合にできる 証明 Xを任意の集合とする 以下略す 注) 1)カントルは1883年の有名な論文で整列集合の概念を与えてすべての集合を整列集合にできることは原理であり自明なことであると主張した後年になって証明を試みたようであるが成果は得られず連続体仮説とともにカントルの残した集合論の大きな課題となったツェルメロは選択公理を原理として提起してそれを用いて整列可能定理を証明したその議論は大論争を巻き起こしたが情況が明らかになる中でツェルメロは集合の公理を提示するとともに 整列可能定理の別証明を与えた(1908) 2)赤[]にはツェルメロの元証明にしたがった議論が収められている (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1724969804/963
966: 132人目の素数さん [] 2025/01/03(金) 11:08:15.36 ID:QLWcqwtj >>962 補足 (引用開始) >大事な所だけもう一度言う。 >整列定理からは如何なる具体的整列順序も出ない。よって「整列定理を用いて」は大間違い。 おれも言っておくが ・整列可能定理は、一階述語論理では選択公理と同値と言われる ・つまり、その本質は 整列可能”公理”である ・そもそも公理は、具体的な色がついていない ・具体的な色がついていないから、いろんな場面で万能に使えるってこと ・その上で、具体的な色がついていないけれど、数学者が工夫して 色を付けることを妨げない ・そうでなければ、公理として役に立たない (引用終り) 大事なところだから、追加しておく まず、前振り 下記 整列定理と同値といわれる 選択公理がある ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理 選択公理(英: axiom of choice、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた[1]。 選択公理の変種 選択公理には様々な変種が存在する。 可算選択公理 →詳細は「可算選択公理」を参照 選択公理よりも弱い公理として、可算選択公理(英: countable axiom of choice,denumerable axiom of choice)というものも考えられている[2]。全ての集合は可算集合を含むこと、可算集合の可算和が可算集合であることは、この公理により証明できる。 カントール、ラッセル、ボレル、ルベーグなどは、無意識のうちに可算選択公理を使ってしまっている (引用終り) この可算選択公理を、考えると 可算整列可能定理が導かれるだろう (フルパワー選択公理からは、非可算整列可能定理が導かれる) さて、可算整列可能定理を使って、有理コーシー列 ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97 ができることは、すぐ分る(ここは、伝統的には ”無意識のうちに可算選択公理を使ってしまっている”箇所だろう) 有理コーシー列から、有理数Qを完備化した実数Rが構成できる 有理数Qを完備化すると、無理数(超越数を含む)が出てくる 超越数で、具体的に有理コーシー列を構成できる円周率πや自然対数の底e がある 一方で、多くの超越数で具体的な有理コーシー列を構成できない存在がある つまり、整列可能定理は公理として、有理コーシー列で有理数Qの完備化を可能として 無理数(超越数を含む)の存在を保証するが 具体的な 有理コーシー列を持つ π、eなどもあれば 具体的な 有理コーシー列が分らない π+e、π-e などもある 全部ひっくるめて、整列可能定理(実は公理)なのです 具体的な場合も、具体的でない場合も含めて 整列可能”公理”です (参考) ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0 超越数 超越数かどうかが未解決の例 π+e、π-e ・・・ 有理数であるのか無理数であるのか超越的であるのか否かは証明されていない[注 4] http://rio2016.5ch.net/test/read.cgi/math/1724969804/966
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s