[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
437(1): 2024/09/23(月)05:59 ID:9YgWFQgd(1/8) AAS
>普段読んでいる本が、英語のペーパーバックスの小説でした
百科辞典が多くの家の客間にあった時代
441: 2024/09/23(月)09:07 ID:9YgWFQgd(2/8) AAS
円理の研究における初期の課題の一つは、円周率のよい近似を与える分数を求めることでした。
関は正$2^{15}, 2^{16},2^{17}$角形の周長の計算を行い、その計算結果をもとにして
$355/113$を導きました\footnote{詳しくは[1]などを参照.}。この方法を建部兄弟が効率化することにより円理が進展しました。まず、円に内接する正$2^n$角形の周長$\sigma_n$についてですが、$2^{17}$までの計算結果から一定の正確さでその先の結果を推定できます。具体的には、関は$\sigma_n$の階差数列を用いた式\begin{equation}\frac{(\sigma_{16}-\sigma_{15})(\sigma_{17}-\sigma_{16})}{(\sigma_{16}-\sigma_{15})-(\sigma_{17}-\sigma_{16})}\end{equation}を用いて$\pi=3.1415926535\cdots$を得ました。ちなみにこれは今日エイトキン\footnote{A. C. Aitken, 1895-1967. ニュージーランドの数学者.}法と呼ばれるものと同等です。一方、賢弘の方法は今日リチャードソン\footnote{L. F. Richardson, 1881-1953. 英国の数学者.}補外(cf. [2])と呼ばれるものに相当します。賢明はこの周長を分数に直すのに連分数\footnote{正の無理数$x$に対しその整数部分を$[x]$とするとき、$x$を近似する有理数を整数列$[x], \left[\frac{1}{x-[x]}\right], \dots$を用いて表したもの. 黄金比$\frac{\sqrt{5}-1}{2}$が$1/(1+1/(1+1/\cdots))$であることは有名.}を用いました。
444(1): 2024/09/23(月)10:50 ID:9YgWFQgd(3/8) AAS
入試問題は若者が耐え忍ぶべき
negative messagesの一例に過ぎない
446(1): 2024/09/23(月)10:59 ID:9YgWFQgd(4/8) AAS
本当は証明にそんなにこだわる必要はないのだが
449(1): 2024/09/23(月)11:11 ID:9YgWFQgd(5/8) AAS
>実際には,
>e^(z1+z2)=e^z1^・e^z2
>が成り立つことを証明するのに加法定理を使っているので加法定理の証明にはならない.
加法定理を使わない証明もある
450(2): 2024/09/23(月)11:14 ID:9YgWFQgd(6/8) AAS
「定義はこうでなければいけない」というこだわりが
場合によっては害悪をもたらす
461: 2024/09/23(月)19:24 ID:9YgWFQgd(7/8) AAS
Rudinの本の序文の影響も大きい
463: 2024/09/23(月)20:37 ID:9YgWFQgd(8/8) AAS
高校時代にナチから逃れるためにウィーンを去らねばならなかったルディンは
どんな思いであの序文を書いたのだろうか
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s