高校数学の質問スレ(医者・東大卒専用) Part438 (991レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
842: 05/24(土)02:35 ID:VetM3rz7(1/5) AAS
LearnBayes::beta.selectをoptimを使って算出
beta.optim <- function(x1, p1, x2, p2, verbose = TRUE) {
# -------------------------
# モーメント近似による初期値推定
# -------------------------
mu0 <- (x1 + x2) / 2 # 仮の平均
sigma2 <- ((x2 - x1) / 4)^2 # 仮の分散(中間50%幅から)
省42
843: 05/24(土)08:17 ID:VetM3rz7(2/5) AAS
library(rjags)
# Fit a Bayesian logistic regression model using JAGS and return predictions and posterior summaries
fit_bayesian_logistic_jags <- function(data, formula, newdata,
n.chains = 3, n.iter = 5000, n.burnin = 1000) {
# Extract response variable name from the formula
response_var <- all.vars(formula)[1]
y <- data[[response_var]]
省43
844: 05/24(土)08:18 ID:VetM3rz7(3/5) AAS
# Example data
data <- data.frame(
donation = c(0, 1000, 2000, 0, 3000, 0, 4000, 0, 5000, 0),
score = c(90, 40, 35, 88, 30, 85, 25, 92, 20, 89),
parent = c(0, 1, 1, 0, 1, 0, 1, 0, 1, 0),
admission = as.factor(c(0, 1, 1, 0, 1, 0, 1, 0, 1, 0))
)
省25
845: 05/24(土)08:37 ID:VetM3rz7(4/5) AAS
library(rjags)
# Fit a Bayesian logistic regression model using JAGS and return predictions and posterior summaries
fit_bayesian_logistic_jags <- function(data, formula, newdata,
n.chains = 3, n.iter = 5000, n.burnin = 1000) {
# Extract response variable name from the formula
response_var <- all.vars(formula)[1]
y <- data[[response_var]]
省43
846: 05/24(土)21:16 ID:VetM3rz7(5/5) AAS
# dbeta(L,a,b) == dbbeta(U,a,b)
# Solve[L^(a-1)(1-L)^(b-1)==U^(a-1)(1-U)^(b-1), b]
L=1/7
U=1/5
credMass = 0.95
f = function(a) 1 + ((a - 1) * log(U / L)) / log((1 - L) / (1 - U))
g = function(a) pbeta(U,a,f(a)) - pbeta(L,a,f(a)) - credMass
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s