高校数学の質問スレ(医者・東大卒専用) Part438 (979レス)
高校数学の質問スレ(医者・東大卒専用) Part438 http://rio2016.5ch.net/test/read.cgi/math/1723152147/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
52: 132人目の素数さん [sage] 2024/08/15(木) 19:23:48.55 ID:ysyyeRB1 Rに移植 j=\(n){ a=sample(3,n,replace=TRUE) count=1 while(length(unique(a))!=2){ a=sample(3,n,replace=TRUE) count=count+1 } b=sort(unique(a)) if(all(b==c(1,2))) winner=2 if(all(b==c(2,3))) winner=3 if(all(b==c(1,3))) winner=1 winners=sum(a==winner) c(winners,count) } sim=\(n){ c=j(n) winner=c[1] count=c[2] while(winner>1){ k=j(winner) winner=k[1] count=count+k[2] } count } res9=replicate(1e5,sim(9)) BEST::plotPost(res9,breaks='scott') http://rio2016.5ch.net/test/read.cgi/math/1723152147/52
152: 132人目の素数さん [sage] 2024/08/25(日) 12:59:59.55 ID:/qrXHaIo >>140 行列で計算させると算出時間が爆速なのにびっくりしました。 達人のスクリプトを改造して道具箱に保存しておきます。 (* j 人でジャンケンをしたときの終了までの回数の最頻値とその確率を返す *) calc[j_]:=( M=Table[If[n==m,1-(2^m-2)/3^(m-1),Binomial[m,n]/3^(m-1)],{m,1,j},{n,1,j}]; p=Differences@Table[MatrixPower[M,i][[j,1]],{i,0,10j}]; max=Max@p; Flatten@{Position[p,max],max,N[max]} ) In[3]:= calc[15] Out[3]= {30, 65101358743766874914341259145354001254712997240185483777481087387163094008455949207206\ > 93198405902336999941273392239247993407703628004425130823658476122231689832344483758966236574\ > 375695 / 11947838420050013668726696739307151046843799152024135169583095938840977078626722578\ > 97327618239887790786549346048626664496721871548575328400043101228717425477619608889629973635\ > 327326175449, 0.0054488} calc[15] http://rio2016.5ch.net/test/read.cgi/math/1723152147/152
279: 132人目の素数さん [sage] 2024/10/31(木) 13:47:25.55 ID:grkcalAP function (n, m) { stopifnot(is.numeric(n), is.numeric(m)) if (length(n) == 1) { n <- rep(n, length(m)) } else if (length(m) == 1) { m <- rep(m, length(n)) } ln <- length(n) lm <- length(m) if (ln != lm) stop("Arguments 'n', 'm' must be scalars or have the same length.") if (any(floor(n) != ceiling(n)) || any(floor(m) != ceiling(m))) stop("Arguments 'n', 'm' must be integers or vectors of integers.") k <- ifelse(m != 0, n%%m, NaN) k <- ifelse(m != 0 & sign(n) != sign(m) & k != 0, k - m, k) return(k) } http://rio2016.5ch.net/test/read.cgi/math/1723152147/279
373: 132人目の素数さん [sage] 2024/12/04(水) 16:35:44.55 ID:M2J+bJMI Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit) Copyright 1988-2023 Wolfram Research, Inc. In[1]:= solve[nn_,n_,m_]:=( ass=Counts[#]& /@ Flatten[Table[Sort /@ IntegerPartitions[x,{n},Range[0,m-1]],{x,m*Range[0,n-1]}],1]; li=KeyValueMap[List,#]& /@ ass; {q,r}=QuotientRemainder[nn,m]; c=Flatten@{Table[q+1,r],Table[q,m-r]}; m2c[x_] :=( i=If[x[[1]]==0,m,x[[1]]]; Binomial[c[[i]],x[[2]]]); cases=Total[Times@@@ (m2c /@ # & /@ li)]; (* cases=Total[Times@@ #&/@ (m2c /@ # & /@ li)];*) cases/Binomial[nn,n] ) In[2]:= solve[100,10,5] 4555344594 Out[2]= ----------- 22776722969 http://rio2016.5ch.net/test/read.cgi/math/1723152147/373
427: 132人目の素数さん [sage] 2024/12/19(木) 15:01:20.55 ID:K/JbHbND 東大卒なら算出できるんじゃないの? Wolfram,Pyth9n,C,Rのどれかは理工系卒なら使えて当然。 Fランは違うのか? http://rio2016.5ch.net/test/read.cgi/math/1723152147/427
729: 132人目の素数さん [sage] 2025/02/20(木) 18:42:43.55 ID:wRRdyhfp >>728 答は出せたの?Fランくん? http://rio2016.5ch.net/test/read.cgi/math/1723152147/729
813: 132人目の素数さん [sage] 2025/04/30(水) 08:13:09.55 ID:wedVH8wl コメントが長すぎて読みにくくなった。 http://rio2016.5ch.net/test/read.cgi/math/1723152147/813
818: 132人目の素数さん [sage] 2025/05/01(木) 11:18:32.55 ID:L1qIlz9/ ニッチな値の探索処理が終了しないコード rm(list=ls()) library(fmsb) library(parallel) alpha <- 0.05 # Function to perform a single simulation sim_single <- function(N = 100) { A <- sample(1:N, 1) while (A > N - 2) A <- sample(1:N, 1) B <- sample(N - A - 1, 1) C <- N - A - B ABC <- c(A, B, C) abc <- sapply(ABC, function(x) sample(x, 1)) x <- abc n <- ABC m <- rbind(s = x, f = n - x) bonf_res <- pairwise.fisher.test(x, n, p.adj = 'bonf') holm_res <- pairwise.fisher.test(x, n, p.adj = 'holm') fdr_res <- pairwise.fisher.test(x, n, p.adj = 'fdr') none_res <- pairwise.fisher.test(x, n, p.adj = 'none') bonf <- min(bonf_res$p.value, na.rm = TRUE) holm <- min(holm_res$p.value, na.rm = TRUE) fdr <- min(fdr_res$p.value, na.rm = TRUE) none <- min(none_res$p.value, na.rm = TRUE) list(m = m, bonf = bonf, holm = holm, fdr = fdr, none = none) } # Function to find a result that meets the criteria using parallel processing find_result_parallel_loop <- function(alpha = 0.05, num_cores = detectCores() - 1) { # Create a cluster of worker processes cl <- makeCluster(num_cores) # Ensure the cluster is stopped when the function exits on.exit(stopCluster(cl)) # Export the sim_single function to the worker processes clusterExport(cl, "sim_single") # Load the fmsb library in the worker processes clusterEvalQ(cl, library(fmsb)) cat("Searching for a result that meets the criteria...\n") while (TRUE) { # Run simulations in parallel results <- parLapply(cl, 1:num_cores, function(i) { # Run as many simulations as cores sim_single() }) # Check the results for the desired condition for (res in results) { if (res$bonf > alpha && res$holm < alpha) { cat("Result meeting the criteria found:\n") return(res) } } # If no result found in this batch, continue the loop } } # Find the result using parallel processing until found res_parallel_loop <- find_result_parallel_loop(alpha = alpha) # Output the result (will be printed within the loop when found) print(res_parallel_loop) http://rio2016.5ch.net/test/read.cgi/math/1723152147/818
828: 132人目の素数さん [sage] 2025/05/05(月) 19:09:02.55 ID:LDY1RQtT Details: The function works by simulating the event outcomes in each group through bootstrap resampling. For each group, it draws `n1` (or `n2`) samples with replacement from a hypothetical population that has the observed proportion of events (`r1/n1` or `r2/n2`). The number of events in each resampled set (`R1` and `R2`) is then used to calculate a bootstrapped risk ratio `(R1/n1) / (R2/n2)`. This process is repeated `nboot` times to generate a distribution of risk ratios. The function then calculates the mean of this distribution and its Highest Density Interval (HDI), which represents the most credible range for the true risk ratio given the data and the bootstrap procedure. If `verbose` is set to `TRUE`, the function attempts to plot the distribution of the bootstrapped risk ratios using a script named `plotpost.R`. This requires that the `plotpost.R` script exists in the current working directory and is capable of handling the vector of bootstrapped risk ratios. Value: The function returns a list with the following components: * `b_mean`: The mean of the bootstrapped risk ratios. * `b_ci`: The Highest Density Interval (HDI) of the bootstrapped risk ratios, as a vector with the lower and upper bounds. Note: The `verbose = TRUE` option depends on an external script `plotpost.R`. If you intend to use this option, ensure that the script is available and correctly implemented for plotting posterior-like distributions. The HDI is calculated using the `hdi` function from the `HDInterval` package, so this package must be installed (`install.packages("HDInterval")`) and loaded (`library(HDInterval)`) if you intend to use the default behavior. http://rio2016.5ch.net/test/read.cgi/math/1723152147/828
847: 132人目の素数さん [sage] 2025/05/25(日) 04:22:37.55 ID:P4nhnL8B # dbeta(L,a,b) == dbbeta(U,a,b) # Solve[L^(a-1)(1-L)^(b-1)==U^(a-1)(1-U)^(b-1), b] L=1/7 U=1/5 credMass = 0.95 f = function(a) 1 + ((a - 1) * log(U / L)) / log((1 - L) / (1 - U)) g = function(a) pbeta(U,a,f(a)) - pbeta(L,a,f(a)) - credMass (re=uniroot(g,c(1,1e5))) a=re$root b=f(a) c(a,b) curve(g(x),1,1.5*a,bty="l") ; abline(h=0,lty=3) a/(a+b) # mean (a-1)/(a-1+b-1) # mode library(LearnBayes) beta.select(list(x=1/7,p=0.025),list(x=1/5,p=0.975)) http://rio2016.5ch.net/test/read.cgi/math/1723152147/847
923: 132人目の素数さん [sage] 2025/06/22(日) 13:20:05.55 ID:AY7cZjkg >>922 AIは解答を出しておりません http://rio2016.5ch.net/test/read.cgi/math/1723152147/923
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s