[過去ログ] 数学の抽象化って抽象化ではないよな (96レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
16(2): 2024/07/04(木)08:33 ID:rVX7gjYh(2/2) AAS
$\mathbb{C}(z)$は個々の要素が関数であるという点において$\mathbb{C}$とは大きく異なりますが、純粋に代数的な構造だけを見るという視点からは、$\mathbb{C}(z)$と$\mathbb{C}$の違いは次のようにも表現できます。
\textbf{$\mathbb{C}(z)$は$\mathbb{C}$を含み、0でないいかなる多項式の根にならない元を含む。}
別の言い方では、一旦は関数という意味から離れて$\mathbb{C}[X]$で$\mathbb{C}$を係数とする$X$(不定元)に関する多項式の集合を表すとき、「$F(X)\in\mathbb{C}[X]\setminus\{0\}$かつ$f(z)\in\mathbb{C}(z)\setminus\mathbb{C}$ならば$F(f(z))\neq0$」となります。
上下前次1-新書関写板覧索設栞歴
あと 80 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.005s