[過去ログ] 高校数学の質問スレ Part434 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
690(2): 2024/04/29(月)19:22 ID:a8YGSOSe(5/7) AAS
正方形の4頂点を
(x+y, y) (x-y, y) (x-y, -y) (x+y, -y)
とおく。
(x+y, y) が辺 P1-P2 上にある:
(R・sin(4π/7)-y)/(R・cos(4π/7)-x-y) = (y-R・sin(2π/7))/(x+y-R・cos(2π/7)),
∴ cos(3π/7)(x+y) + sin(3π/7)・y = R・cos(π/7),
(x-y, y) が辺 P2-P3 上にある:
(R・sin(6π/7)-y)/(R・cos(6π/7)-x+y) = (y-R・sin(4π/7))/(x-y-R・cos(4π/7)),
∴ cos(5π/7)(x-y) + sin(5π/7)・y = R・cos(π/7),
x を消去して y を求める。
y = R・[cos(π/7)+cos(2π/7)]/[cos(π/7)-cos(2π/7)+sin(2π/7)]
= 0.719552293661 R,
∴ S = (2y)^2 = 1.35852945988622
上下前次1-新書関写板覧索設栞歴
あと 312 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.016s