[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
958
(4): 2024/06/04(火)21:12 ID:GxSzeiWS(1/2) AAS
>>948
>>入れる数が無限の場合はそもそも決定番号の分布は存在しないのです! 分布を考えることができない!
>入れる数? 入れる箱だろ?

1)入れる数であっている。コイントスは0,1の二通り。サイコロは1〜6の6通り
 自然数Nや有理数Qの範囲ならば、可算無限
 連続濃度Rなら連続無限
 そして、箱入り無数目の条件は、「どんな実数を入れるかはまったく自由」>>1
省14
960
(1): 2024/06/04(火)23:27 ID:fpbR6aQy(4/4) AAS
>>958
>>入れる数? 入れる箱だろ?
>入れる数であっている。
の後の説明は、明らかに入れる箱が無限の場合の説明

1、ついに狂う
961
(1): 2024/06/05(水)06:21 ID:X29ZhDGs(1/11) AAS
>>958
>決定番号の分布は存在しない
存在しようがしまいが関係無い
記事の証明はそんなもの使ってないので

で、>>928の答えはまだですか?
967
(3): 2024/06/05(水)11:07 ID:GTWVkqvF(2/4) AAS
>>966
1)反例があることは、お認めになられたわけですね
 それは結構なことだ
2)さて、>>963>>958に示したように
「(箱の中の)実数Rを考えると、上記のように、L=nにおいて決定番号d=nの確率1
 決定番号d<nの確率0
 この状況で、n→∞とすれば確率1の箱は無限のかなたに飛んでいく
省10
976
(2): 2024/06/05(水)15:16 ID:GTWVkqvF(3/4) AAS
>>968
(引用開始)
選択公理を前提する
この場合、無限列の尻尾同値類の代表をとることができる
したがって、どんな100列をとっても、それぞれの尻尾同値類と相違する項は有限個しかなく、無限個の項で一致する
もし、サイコロの出目を入れたとして、どの箱を選んでも、当たる確率が1/6しかないなら
少なくとも選んだ箱の5/6は、尻尾同値類と相違する有限個の項にあたる箱であることになる
省17
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s