[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ6 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
335
(1): 2024/02/01(木)18:36 ID:nkXreRAg(8/10) AAS
つづき

可算無限個の長方形を使った測度を考えます。図形(平面の有界な集合)Sを,重なりを許した
可算無限個の長方形I1,I2,...で覆ったとき,それらの長方形の面積I1, I2,...の和の下限inf ∞ ? i=1 IiをSのルベーグ外測度といい,m∗(S)で表します。

カラテオドリの意味の可測性もなりたつことが知られています。より一般的には,上の性質1〜3を満たすm∗を外測度といい,それがある集合に対してカラテオドリの意味で可測であるとき,その集合を可測集合といい,その外測度を測度とよびます。

零集合と「ほとんどいたるところ」
ここまでの議論をふまえて,最初の「有理数全体の幅」の問題を考えます。ここまでは平面上の図形を長方形で覆うイメージを思い浮かべてきましたが,ここでは,数直線上のある集合を「区間」を組み合わせて覆うことを考えます。有理数は可算無限個あるので,ジョルダン測度の考え方で「幅」を考えることはできません。そこで,ルベーグ測度で考えます。有理数は可算ですから,通し番号をつけてa1,a2,...an...と表すことができます。ルベーグ測度の考えでは,有理数の集合が数直線上でもつ幅は,有理数全体を区間の組み合わせ(重なってもよいことに注意)で覆ったときの,区間の長さの合計の下限です。そこで,εを任意の正の数とし,a1を幅ε/2の区間で,a2を幅ε/2^2の区間で,・・・,anを幅ε/2^nの区間で覆うとします。このとき区間の長さの合計は
ε/2+ ε/2^2+・・ + ε/2^n+・・ =ε
省5
344
(2): 2024/02/02(金)13:24 ID:3jiIZ1yL(1/7) AAS
>>341-343
そだね

1)区間[0,1]中の数列、1/1,1/2,1/3,・・1/n・・→0 (n→∞)
 が、無限列である。同様に次も無限 m/(m+1)∋[0,1]
2)さて、1点は測度0である。もし、0以外の有限測度cを与えると
 加法則から数列 1/1,1/2,1/3,・・1/n・・の測度は(∞に)発散するので
 区間[0,1]の測度が発散するので、まずい(背理法)
省19
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.051s