[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ6 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ6 http://rio2016.5ch.net/test/read.cgi/math/1704672583/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
835: 132人目の素数さん [] 2024/05/12(日) 09:01:52.55 ID:qeZkOp9E つづき https://www.math.nagoya-u.ac.jp/~yanagida/2020MP1.html 2020年度秋学期 数理科学展望I (柳田担当分) 講義ノートのpdf (ver. 2020.12.21) https://www.math.nagoya-u.ac.jp/~yanagida/20W/2020MPI.pdf 内容 この講義では, 量子力学の話題を動機とした Lie群とLie環の表現論の入門的説明を行います. https://www.jstage.jst.go.jp/article/sugaku1947/34/1/34_1_1/_pdf/-char/en 論説 数学 (1981年9月14日提出)*1981年4月5日京都大学における第9回日本数学会彌永賞受賞講演 ソリトン方程式とKac-Moodyリー環 柏原 正樹*神保 道夫 伊達 悦朗 三輪 哲二 §1.序 代数方程式の研究に,解の変換群の概念を導入し,その有効性を示したのはGaloisである.こ のGaloisの視点を,微分方程式に適用する試みの中から,リー群,リー環の概念は生まれた.線 型微分方程式を,この立場で研究するものとして,Picard-Vessiot理論があり,そこに現われる群 は,有限次元Lie群である.有限次元半単純リー環の研究における, Cartan行列を基礎におく理 論構成を一般化して,Kac-Moobyリー環と呼ばれる,無限次元リー環の概念が生まれた([IY 38], [IY 68],[40])1).ほぼ同じ頃,ソリトン理論が,その姿を現わしつつあった.ソリトン理論にあら われる非線型方程式(以下,ソリトン方程式と呼ぶ)は,線型方程式系の可積分条件として表わされ るという側面をもつ.本稿では,ソリトン方程式の解の変換群を考察し,ある種のソリトン方程式 の変換群のリー環として,Euclid型リー環と呼ばれるKac-Moodyリー環が現われることを示す. https://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/H18-tamagawa.pdf 数学入門公開講座テキスト(京都大学数理解析研究所,平成18年) ガロア理論とその発展 玉川安騎男 環の典型的な現れ方として、与えられた空間Xの上の(適当な条件を満たす)関数全体のなす環があります。この場合、関数の値の和、差、積を考えることにより、関数の和、差、積を定義します。(1,0は、それぞれ恒等的に値1,0を取る関数として定義します。) 実は、任意の環はこのようにして得られることが知られています。 より正確に言うと、与えられた環Rに対し、アフィンスキームと呼ばれるある種の空間Spec(R)が定まり、Rは空間Spec(R) 上の正則関数全体のなす環と自然に同一視されます。更に、環を考えることとアフィンスキームを考えることは本質的に同等であることが知られています。一般のスキームは、アフィンスキームをはり合わせることにより定義されます。 1950年代後半にグロタンディークによって定義されたこのスキームは、代数多様体(≈多項式で定義される図形)の概念を大きく一般化するもので、現在の代数幾何学・数論幾何学の基礎をなす概念です。 つづく http://rio2016.5ch.net/test/read.cgi/math/1704672583/835
855: 132人目の素数さん [sage] 2024/05/12(日) 14:47:53.39 ID:kLL3MH+1 >>834-836 君って、なんか弁解できなくなると、 ムキになって、手当たりしだいリンク貼りまくり コピペしまくりで、荒れまくるけど どういうつもり? おりこうだね、って褒めてもらいたいの? やってることが、三歳児だね http://rio2016.5ch.net/test/read.cgi/math/1704672583/855
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s