[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ6 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ6 http://rio2016.5ch.net/test/read.cgi/math/1704672583/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
584: 132人目の素数さん [] 2024/03/06(水) 11:07:39.93 ID:/C4GD2vN Weilの数学史的な評価は誰がしていますか http://rio2016.5ch.net/test/read.cgi/math/1704672583/584
587: 132人目の素数さん [] 2024/03/08(金) 11:35:28.32 ID:MhH+/eu1 >>584 >Weilの数学史的な評価 下記がありますね https://en.wikipedia.org/wiki/Andr%C3%A9_Weil André Weil Work Among his major accomplishments were the 1940s proof of the Riemann hypothesis for zeta-functions of curves over finite fields, and his subsequent laying of proper foundations for algebraic geometry to support that result (from 1942 to 1946, most intensively). The so-called Weil conjectures were hugely influential from around 1950; these statements were later proved by Bernard Dwork, Alexander Grothendieck,Michael Artin, and finally by Pierre Deligne, who completed the most difficult step in 1973. Weil introduced the adele ring in the late 1930s, following Claude Chevalley's lead with the ideles, and gave a proof of the Riemann–Roch theorem with them (a version appeared in his Basic Number Theory in 1967).His 'matrix divisor' (vector bundle avant la lettre) Riemann–Roch theorem from 1938 was a very early anticipation of later ideas such as moduli spaces of bundles. The Weil conjecture on Tamagawa numbers proved resistant for many years. Eventually the adelic approach became basic in automorphic representation theory. He picked up another credited Weil conjecture, around 1967, which later under pressure from Serge Lang (resp. of Serre) became known as the Taniyama–Shimura conjecture (resp. Taniyama–Weil conjecture) based on a roughly formulated question of Taniyama at the 1955 Nikkō conference. His attitude towards conjectures was that one should not dignify a guess as a conjecture lightly, and in the Taniyama case, the evidence was only there after extensive computational work carried out from the late 1960s. Other significant results were on Pontryagin duality and differential geometry.He introduced the concept of a uniform space in general topology, as a by-product of his collaboration with Nicolas Bourbaki (of which he was a Founding Father). His work on sheaf theory hardly appears in his published papers, but correspondence with Henri Cartan in the late 1940s, and reprinted in his collected papers, proved most influential. He also chose the symbol ∅, derived from the letter Ø in the Norwegian alphabet (which he alone among the Bourbaki group was familiar with), to represent the empty set. Weil also made a well-known contribution in Riemannian geometry in his very first paper in 1926, when he showed that the classical isoperimetric inequality holds on non-positively curved surfaces. This established the 2-dimensional case of what later became known as the Cartan–Hadamard conjecture. He discovered that the so-called Weil representation, previously introduced in quantum mechanics by Irving Segal and David Shale, gave a contemporary framework for understanding the classical theory of quadratic forms. http://rio2016.5ch.net/test/read.cgi/math/1704672583/587
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s