[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
356(1): 2023/03/13(月)21:10 ID:UeELXD7y(3/14) AAS
>>355
つづき
例
R を実数体とし、C を複素数体とし、H を四元数体とする。
R 上のすべての有限次元単純代数は R, C, あるいは H 上の行列環でなければならない。R 上のすべての中心的単純代数は R あるいは H 上の行列環でなければならない。これらの結果はフロベニウスの定理から従う。
C 上のすべての有限次元単純代数は C 上の行列環でなければならない。したがって C 上のすべての中心的単純代数は C 上の行列環でなければならない。
有限体上のすべての有限次元中心的単純代数はその体上の行列環でなければならない。
省17
357(3): 2023/03/13(月)21:11 ID:UeELXD7y(4/14) AAS
>>356
つづき
(参考)英語版に詳しい証明がある、ただし文字化けなおさず。本文参照ください
外部リンク:en.wikipedia.org
Frobenius theorem (real division algebras)
In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following:
R (the real numbers)
省15
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s