[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1677671318/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
357: 132人目の素数さん [] 2023/03/13(月) 21:11:19.15 ID:UeELXD7y >>356 つづき (参考)英語版に詳しい証明がある、ただし文字化けなおさず。本文参照ください https://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) Frobenius theorem (real division algebras) In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following: R (the real numbers) C (the complex numbers) H (the quaternions). These algebras have real dimension 1, 2, and 4, respectively. Of these three algebras, R and C are commutative, but H is not. Proof The main ingredients for the following proof are the Cayley?Hamilton theorem and the fundamental theorem of algebra. Introducing some notation Let D be the division algebra in question. Let n be the dimension of D. We identify the real multiples of 1 with R. When we write a <= 0 for an element a of D, we tacitly assume that a is contained in R. We can consider D as a finite-dimensional R-vector space. Any element d of D defines an endomorphism of D by left-multiplication, we identify d with that endomorphism. Therefore, we can speak about the trace of d, and its characteristic and minimal polynomials. For any z in C define the following real quadratic polynomial: Q(z;x)=x^{2}-2\operatorname {Re} (z)x+|z|^{2}=(x-z)(x-{\overline {z}})\in \mathbf {R} [x]. Note that if z ∈ C ? R then Q(z; x) is irreducible over R. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/357
358: 132人目の素数さん [] 2023/03/13(月) 21:11:52.56 ID:UeELXD7y >>357 つづき The claim The key to the argument is the following Claim. The set V of all elements a of D such that a2 <= 0 is a vector subspace of D of dimension n - 1. Moreover D = R 〇+ V as R-vector spaces, which implies that V generates D as an algebra. Proof of Claim: Let m be the dimension of D as an R-vector space, and pick a in D with characteristic polynomial p(x). By the fundamental theorem of algebra, we can write p(x)=(x-t_{1})\cdots (x-t_{r})(x-z_{1})(x-{\overline {z_{1}}})\cdots (x-z_{s})(x-{\overline {z_{s}}}),\qquad t_{i}\in \mathbf {R} ,\quad z_{j}\in \mathbf {C} \backslash \mathbf {R} . We can rewrite p(x) in terms of the polynomials Q(z; x): p(x)=(x-t_{1})\cdots (x-t_{r})Q(z_{1};x)\cdots Q(z_{s};x). Since zj ∈ C\R, the polynomials Q(zj; x) are all irreducible over R. By the Cayley?Hamilton theorem, p(a) = 0 and because D is a division algebra, it follows that either a ? ti = 0 for some i or that Q(zj; a) = 0 for some j. The first case implies that a is real. In the second case, it follows that Q(zj; x) is the minimal polynomial of a. Because p(x) has the same complex roots as the minimal polynomial and because it is real it follows that p(x)=Q(z_{j};x)^{k}=\left(x^{2}-2\operatorname {Re} (z_{j})x+|z_{j}|^{2}\right)^{k} Since p(x) is the characteristic polynomial of a the coefficient of x2k?1 in p(x) is tr(a) up to a sign. Therefore, we read from the above equation we have: tr(a) = 0 if and only if Re(zj) = 0, in other words tr(a) = 0 if and only if a2 = ?|zj|2 < 0. So V is the subset of all a with tr(a) = 0. In particular, it is a vector subspace. The rank?nullity theorem then implies that V has dimension n - 1 since it is the kernel of {\displaystyle \operatorname {tr} :D\to \mathbf {R} }. Since R and V are disjoint (i.e. they satisfy {\displaystyle \mathbf {R} \cap V=\{0\}}), and their dimensions sum to n, we have that D = R 〇+ V. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/358
368: 132人目の素数さん [sage] 2023/03/14(火) 07:40:02.26 ID:bQV51cAg >>367 1、検索結果を読んでも全く理解できず全コピペ さすが大学1年の4月で落ちこぼれた真正●● Q, >>357-360を読んで肝心な部分をまとめて 2048バイト以内(すなわち1コメント)で書け 1には絶対できないと予言する 勝った!(完全勝利宣言!!!) http://rio2016.5ch.net/test/read.cgi/math/1677671318/368
381: 132人目の素数さん [sage] 2023/03/14(火) 20:13:06.85 ID:bQV51cAg >>377-379 東京●●大と大阪●●大 落ちこぼれ同士の共鳴 > 数学科以外で自分より上がいると、 > 落ちこぼれた自分がみじめで許せないんだ 誰が上?貴様が? 正則行列も知らず 任意の正方行列に逆行列があると 大嘘ぶっこいた馬鹿野郎の貴様が? 悪いが貴様より下なんかいねえよw で、>>357-360のコピペの要約もできんのか? こんなもんハードル下げまくってるぞ それでも答えられんのか? じゃ解答で二匹の落ちこぼれのゴキブリを焼き尽くすかw まず358はR上の多元体で1以外の基底は みな2乗すると-1になるといってる この証明には代数学の基本定理とケイリー・ハミルトンの定理を使ってる ま、どっちの定理の証明も1には生涯理解できまいから全部省略するw 次に359は多元体をR上の線形空間とみなした場合の生成元の基底を取ったとき 生成元の数が1つなら複素数C (e1^2=-1) 生成元の数が2つなら四元数H (e1^2=e2^2=-1、e1e2=-e2e1 ゆえに(e1e2)^2=-e1^2e2^2=-1) 最後に360は生成元の数が3以上だとe1e2en=1となるから、 358に述べた定理によって多元体にならないと言ってる たったこんだけだぞ、なんで書けないんだ? 正真正銘のパクチー野郎か?1と乙は?(嘲) http://rio2016.5ch.net/test/read.cgi/math/1677671318/381
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s