[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
405(3): 2023/03/15(水)11:18 ID:eYGN6GRo(1/5) AAS
>>404
ありがとう
へー
方程式論で有名なタルタリア氏 下記”「タルタリア(どもり)」というニックネーム”を連想したけど
「ニコロの顎と口蓋もフランス軍によって切り落とされた。これによって、ニコロは普通には話せなくなり、「タルタリア(どもり)」というニックネームが付けられた」か
良く生き延びたね
ハンディを負って、一層努力したに違いないね
省9
406(1): 2023/03/15(水)11:19 ID:eYGN6GRo(2/5) AAS
>>405
つづき
1535年の初めごろ、アントニオ・マリア・フィオールに数学の公開論戦を申し込まれ、これを受諾した。三次方程式の問題を互いに30問出し合い、30日後に多く解けた方が勝ちとした。タルタリアはこれに勝利し、名声を高めた。
彼が1543年に編集したユークリッド原論の初めての近代ヨーロッパ語訳となった本はとても重大なものであった。
彼はまたその理論に初めて近代的なコメントを付けた。この理論はタルタリアの弟子だったオスティリオ・リッチ(英語版)によって天文学の父として知られるガリレオに教えられ、ガリレオの研究に不可欠な道具となった。
タルタリアの公式
タルタリアは、4つの頂点の間の距離を用いて三角錐の体積を表すタルタリアの公式を考案したことでも知られる。
省4
409(2): 2023/03/15(水)17:28 ID:eYGN6GRo(3/5) AAS
>>405
追加
ポントリャーギン 失明して 数学者となった彼の専門分野は、幾何学
というのが、若いころは意味が取れなかった
抽象的な現代数学の幾何学だったんだね
外部リンク:ja.wikipedia.org
レフ・セミョーノヴィッチ・ポントリャーギン(Лев Семёнович Понтрягин、1908年9月3日 - 1988年5月3日)は、ロシアの数学者。
省3
410(3): 2023/03/15(水)18:00 ID:eYGN6GRo(4/5) AAS
>>400 補足
>n=2 e1,e2
>そこから、四元数 の4次元にもって来るって
これ、数学ではよくある筋ですね
元々のハミルトンもこれだったような(下記)
要するに、普通は a + bi + cj の3次元から出発する
つまり、e1=i,e2=j を導入するのが普通の思考
省15
411(1): 2023/03/15(水)18:00 ID:eYGN6GRo(5/5) AAS
>>410
つづき
ハミルトンは複素数が座標平面における点として解釈できることを知っていて、三次元空間の点に対して同じことができる方法を探していた。空間の点はそれらの座標としての数の三つ組によって表すことができ、ハミルトンはそれらの三つ組に対して加法や減法をどのようにすべきかはずっと前から分かっていたのだが、乗法と除法をどう定めるかという問題については長く行き詰ったままであった。ハミルトンは、空間における二点の座標の商をどのように計算すべきかを形にすることができなかったのである。
四元数についての大きな転換点がついに訪れたのは、1843年10月16日の月曜日、ダブリンにおいてハミルトンが理事会の長を務めることになるアイルランド王立アカデミー(英語版)への道すがら、妻とともにロイヤル運河(英語版)の引き船道に沿って歩いているときであった。四元数の背景となる概念が頭の中で形になり、答えが明らかになったとき、ハミルトンは衝動を抑えられずに、四元数の基本公式
i^2 = j^2 = k^2 = ijk = -1
を、渡っていたブルーム橋(英語版)の石に刻みつけた。
(引用終り)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s