[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
447
(4): 2023/03/17(金)07:42 ID:eLmg40vA(1/6) AAS
>>435
>>>381
>>330の(2)はどっかで見た結果だと思ってポントリャーギンの連続群論を確認したら、
>証明には合計18ページ近くを費やしていて、かなり入り組んだ証明になってる

おっちゃんだったか
ありがとう

まあ、>>330なんて いままで何度も見てきたし
省19
460
(1): 2023/03/17(金)20:57 ID:eLmg40vA(2/6) AAS
>>458
 >>340は、おそらくは、都市伝説か
ガセネタだろ?

口頭試問→退学処分
は、無理ゲーでしょ

つまり、口頭試問は、なにかの試験であって
その試験の合不合格は、ありだろうが
省2
462
(4): 2023/03/17(金)22:41 ID:eLmg40vA(3/6) AAS
>>461
だから

1)試験委員は、合格不合格を決める権限があるだけで
 退学かどうかは別問題
2)その逸話は、「米国にアホな数学科の学生が居ましたよww」ってこと(笑い話)でしかない
 つまり、口頭試問の採点基準に対して、アホ学生が本の書名とページを答えたのみで、合格できなかったという
 それって、然の結果でしかない!
省9
463: 2023/03/17(金)22:43 ID:eLmg40vA(4/6) AAS
>>462 タイポ訂正

 それって、然の結果でしかない!
  ↓
 それって、当然の結果でしかない!
465
(3): 2023/03/17(金)23:53 ID:eLmg40vA(5/6) AAS
>>462 補足
バカな問答も、絶対ダメとは言わない(意味があることは認める)
が、それはほどほどにして、下記なども読んだ方がためになるぞ

例えば、東大 「複素数を超えて?四元数と八元数?」
高校生のための現代数学講座だが、これは普通の高校生なら半分理解できたら立派だろうね
100%理解するためには「東大に来い」ってことでしょう
だが、理解はともかく、私は大学では類似のこと読んでいたよ
省12
466
(1): 2023/03/17(金)23:53 ID:eLmg40vA(6/6) AAS
>>465
つづき

外部リンク:ja.wikipedia.org
十六元数(英: sedenion)は、全体として実数体 R 上16次元の(双線型な乗法を持つベクトル空間という意味での)非結合的分配多元環を成す代数的な対象で、その全体はしばしば S で表される。八元数にケーリー=ディクソンの構成法を使って得られる対合的二次代数である。

「十六元数」という用語は、他の十六次元代数構造、例えば四元数の複製二つのテンソル積や実数体上の四次正方行列環などに対しても用いられ、Smith (1995) で調べられている。

算術
ケーリーの八元数と同様に十六元数の乗法は可換でも結合的でもない。そして、ケーリーの八元数環 O と明確に違うことに、十六元数の全体 S は交代代数にもならない。十六元数についていえることは冪結合性(英語版)を持っているということである。これは S の元 x に対して、冪 xn は矛盾なく定義可能で、それらが柔軟(英語版)であることを意味する。
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s