[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
426
(2): 2023/03/16(木)14:56 ID:BEgNOLhF(1/7) AAS
>>424
>ベクトル解析は四元数∩グラスマン代数
>クリフォード代数は四元数もグラスマン代数も包含する
>ついでに言うとスピノールも包含する

うん、工学では、3次元ベクトル解析は講義があった(市販テキスト使用。一般n次元ではなかったが)
下記テンソル場は、特別の講義はなかったが
弾性力学で、応力テンソルとして、導入された
省14
427
(2): 2023/03/16(木)14:56 ID:BEgNOLhF(2/7) AAS
>>426
つづき

関連概念
場の微分
曲率
ナブラ
勾配・発散・回転
省9
428
(1): 2023/03/16(木)14:56 ID:BEgNOLhF(3/7) AAS
>>427
つづき

外部リンク:en.wikipedia.org
Stress (mechanics)
History
Galileo Galilei's rigorous experimental method, Rene Descartes's coordinates and analytic geometry, and Newton's laws of motion and equilibrium and calculus of infinitesimals.[5] With those tools, Augustin-Louis Cauchy was able to give the first rigorous and general mathematical model of a deformed elastic body by introducing the notions of stress and strain.[6]

Overview
省3
429
(1): 2023/03/16(木)14:57 ID:BEgNOLhF(4/7) AAS
>>428
つづき

The Cauchy stress tensor
Main article: Cauchy stress tensor

外部リンク:en.wikipedia.org
Cauchy stress tensor

外部リンク:ja.wikipedia.org
省4
430
(2): 2023/03/16(木)14:57 ID:BEgNOLhF(5/7) AAS
つづき

ケーラー計量がある場合には、リッチ曲率はケーラー計量に比例するので、第一チャーン類は、負か、0か、または、正のいずれかである。

第一チャーン類が負の場合は、オーバン(Aubin)とヤウ(Shing-Tung Yau)が常にケーラー・アインシュタイン計量が存在することを証明した。

第一チャーン類が 0 の場合は、ヤウは常にケーラー・アインシュタイン計量が存在するというカラビ予想を証明した。ヤウはこの仕事でフィールズ賞を受賞した。これがカラビ・ヤウ多様体の名称の由来である。

残りの、第一チャーン類が正の場合(ファノ多様体と言う)が最も困難である。この場合は、存在に非自明な障害が存在する。2012年、チェン(Chen)、ドナルドソン(Donaldson)、スン(Sun)は、この場合の存在性は K-安定性と呼ばれる代数幾何学的な条件に同値であることを証明した。彼らの証明は、アメリカ数学会誌 (the Journal of the American Mathematical Society) の一連の論文に発表された[1][2][3]。
省5
431
(2): 2023/03/16(木)14:58 ID:BEgNOLhF(6/7) AAS
>>430
つづき

応用
4次元リーマンアインシュタイン多様体は、重力の量子論の重力インスタントンとして数理物理学でも重要である。重力インスタントンという言葉は、普通、ワイルテンソル(英語版)(Weyl tensor)が自己双対となっているアインシュタイン 4-次元多様体に限定して使われ、計量が 4次元ユークリッド空間の標準計量に漸近近似している(従って、完全計量(英語版)(complete metric)であるが非コンパクトである)。微分幾何学では、4-次元の自己双対アインシュタイ多様体は、リッチ平坦な場合は超ケーラー多様体としも知られ、そうでない場合は四元数ケーラー多様体(英語版)(quaternion Kahler manifold)として知られている。

高次元のローレンツアインシュタイン多様体は、弦理論、M-理論や超重力理論のような現代の重力理論で使われる。(アインシュタイン多様体の特別な種類である)超ケーラー多様体や四元数ケーラー多様体も、超対称性をもつ非線型シグマモデルのような対象空間での物理学で応用を持つ。

コンパクトなアインシュタイン多様体は、微分幾何学で研究されており、多くの例が知られているが、それらを構成することはチャレンジングなことである。コンパクトリッチ平坦多様体は、特に見つけることが困難で、ペンネームのアーサー・ベッセ(英語版)(Arthur Besse)のこの主題の単行本には、新しい例を発見すると読者にはミシュランの星(英語版)(Michelin star)での食事が提供されます。

外部リンク:ja.wikipedia.org
省3
432
(1): 2023/03/16(木)14:58 ID:BEgNOLhF(7/7) AAS
>>431
つづき

滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。

ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kahler) にちなんでいる。

定義
ケーラー多様体は互いに整合性のある複数の構造を持つため,下記のような複数の観点からの定義方法がある。

応用
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.037s