[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1677671318/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
358: 132人目の素数さん [] 2023/03/13(月) 21:11:52.56 ID:UeELXD7y >>357 つづき The claim The key to the argument is the following Claim. The set V of all elements a of D such that a2 <= 0 is a vector subspace of D of dimension n - 1. Moreover D = R 〇+ V as R-vector spaces, which implies that V generates D as an algebra. Proof of Claim: Let m be the dimension of D as an R-vector space, and pick a in D with characteristic polynomial p(x). By the fundamental theorem of algebra, we can write p(x)=(x-t_{1})\cdots (x-t_{r})(x-z_{1})(x-{\overline {z_{1}}})\cdots (x-z_{s})(x-{\overline {z_{s}}}),\qquad t_{i}\in \mathbf {R} ,\quad z_{j}\in \mathbf {C} \backslash \mathbf {R} . We can rewrite p(x) in terms of the polynomials Q(z; x): p(x)=(x-t_{1})\cdots (x-t_{r})Q(z_{1};x)\cdots Q(z_{s};x). Since zj ∈ C\R, the polynomials Q(zj; x) are all irreducible over R. By the Cayley?Hamilton theorem, p(a) = 0 and because D is a division algebra, it follows that either a ? ti = 0 for some i or that Q(zj; a) = 0 for some j. The first case implies that a is real. In the second case, it follows that Q(zj; x) is the minimal polynomial of a. Because p(x) has the same complex roots as the minimal polynomial and because it is real it follows that p(x)=Q(z_{j};x)^{k}=\left(x^{2}-2\operatorname {Re} (z_{j})x+|z_{j}|^{2}\right)^{k} Since p(x) is the characteristic polynomial of a the coefficient of x2k?1 in p(x) is tr(a) up to a sign. Therefore, we read from the above equation we have: tr(a) = 0 if and only if Re(zj) = 0, in other words tr(a) = 0 if and only if a2 = ?|zj|2 < 0. So V is the subset of all a with tr(a) = 0. In particular, it is a vector subspace. The rank?nullity theorem then implies that V has dimension n - 1 since it is the kernel of {\displaystyle \operatorname {tr} :D\to \mathbf {R} }. Since R and V are disjoint (i.e. they satisfy {\displaystyle \mathbf {R} \cap V=\{0\}}), and their dimensions sum to n, we have that D = R 〇+ V. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/358
371: 132人目の素数さん [] 2023/03/14(火) 07:58:54.56 ID:5bTCTU61 >>369 >ウェッダーバーンの定理の証明なんて 手元に 雪江 代数学3があるよ P350 定理7.5.15 (ヴェーダーバーンの定理) とある 証明は、2ページ弱 なんということもない ネット検索でも、どこかには見つかるだろうさ (英文かもしらんがね) まあ、アホには読めないさwww http://rio2016.5ch.net/test/read.cgi/math/1677671318/371
501: 132人目の素数さん [sage] 2023/03/18(土) 16:08:11.56 ID:IyiE5s9T >>498 改めて読み返したが、4元数体は体ではないので実数体の有限次拡大体ではない http://rio2016.5ch.net/test/read.cgi/math/1677671318/501
586: 132人目の素数さん [] 2023/03/19(日) 11:31:17.56 ID:7NhejE26 >>567 >いわゆる「将棋の神様」から見れば、遥に遥に >浅い所で遊んでいるに過ぎない。 >それは数学や物理でも同じことだろう。 同意 これからは、もっと数学にコンピュータAIが入ってくるだろう 過去、数値計算にコンピュータが導入され、円周率πの計算では、完全に人を凌駕した 天文学では、日食月食が精緻に計算できる 微分方程式の数値解法でも、有限要素法などが、活用されている 天気予報の精度が上がったのは、ご存じの通り その後、数式処理で ご存じ mathematica などが導入され、活用されている ここに、AIが入っている 数学科で落ちこぼれたアホサル >>https://rio2016.5ch.net/test/read.cgi/math/1674527723/5 は、居場所なくなるだろうw https://ja.wolframalpha.com/ Wolframの画期的なアルゴリズム,知識ベース,AIテクノロジーを使って, 専門家レベルの答を計算しましょう http://rio2016.5ch.net/test/read.cgi/math/1677671318/586
682: 132人目の素数さん [] 2023/03/23(木) 13:41:19.56 ID:gtBUMZjM >>681 つづき Oka's result has been generalized to domains spread over any Stein manifold: If such a domain D is a pseudo-convex manifold, then D is a Stein manifold. The Levi problem has also been affirmatively solved in a number of other cases, for example, for non-compact domains spread over the projective space CPn or over a Kahler manifold on which there exists a strictly plurisubharmonic function (see ), and for domains in a Kahler manifold with positive holomorphic bisectional curvature [7]. At the same time, examples of pseudo-convex manifolds and domains are known that are not Stein manifolds and not even holomorphically convex. A necessary and sufficient condition for a complex space to be a Stein space is that it is strongly pseudo-convex (see Pseudo-convex and pseudo-concave). Also, a strongly pseudo-convex domain in any complex space is holomorphically convex and is a proper modification of a Stein space (see , [4] and also Modification; Proper morphism). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1677671318/682
709: 132人目の素数さん [] 2023/03/23(木) 22:39:15.56 ID:aDRJxbk2 小松玄の弟子↓ Kengo Hirachi (平地 健吾 Hirachi Kengo, born 30 November 1964) is a Japanese mathematician, specializing in CR geometry and mathematical analysis. Hirachi received from Osaka University his B.S. in 1987, his M.S. in 1989, and his Dr.Sci., advised by Gen Komatsu, in 1994 with dissertation The second variation of the Bergman kernel for ellipsoids.[1] He was a research assistant from 1989 to 1996 and a lecturer from 1996 to 2000 at Osaka University. He was an associate professor from 2000 to 2010 and a full professor from 2010 to the present at the University of Tokyo. He was a visiting professor at the Mathematical Sciences Research Institute from October 1995 to September 1996, at the Erwin Schrödinger Institute for Mathematical Physics from March 2004 to April 2004, at Princeton University from October 2004 to July 2005, and at the Institute for Advanced Study from January 2009 to April 2009. Awards and honors Takebe Senior Prize (1999) of the Mathematical Society of Japan Geometry Prize (2003) of the Mathematical Society of Japan Stefan Bergman Prize (2006) Inoue Prize for Science (2012) Invited lecture at ICM, Seoul 2014 http://rio2016.5ch.net/test/read.cgi/math/1677671318/709
813: 132人目の素数さん [] 2023/03/28(火) 22:02:48.56 ID:hsF37p1R Michael Eastwood FAA is a mathematician at the University of Adelaide, known for his work in twistor theory, conformal differential geometry and invariant differential operators. In 1976 he received a PhD at Princeton University in several complex variables under Robert C. Gunning. He was a member of the twistor research group of Roger Penrose at the University of Oxford and he coauthored the monograph The Penrose Transform: Its Interaction with Representation Theory with Robert Baston. After moving to South Australia in 1985 he was the 1992 recipient of the Australian Mathematical Society Medal and made a Fellow of the Australian Academy of Science in 2005. In 2012 he was named to the inaugural (2013) class of fellows of the American Mathematical Society. Rod Gover Nationality New Zealander Known for Invariant theory problems, operator classification problem Scientific career Fields Mathematics, differential geometry, theoretical physics Thesis A Geometrical Construction of Conformally Invariant Differential Operators (1989) Doctoral advisor Michael Eastwood Lane P. Hughston http://rio2016.5ch.net/test/read.cgi/math/1677671318/813
851: 132人目の素数さん [] 2023/04/01(土) 22:25:25.56 ID:EAl9sfTc 余因子行列ならよく見る http://rio2016.5ch.net/test/read.cgi/math/1677671318/851
891: 132人目の素数さん [sage] 2023/04/04(火) 10:36:30.56 ID:gMUtsAok >>889 >「行列初耳くん」もいるだろうから >あえて私が「正方行列の逆行列」という >表現をしたところ あえても炒めてもウソはウソじゃね? >「正則行列を知らない!」と、 >揚げ足取りに騒ぐアホ 正則行列と書くべきところで そう書かなきゃ必ず言われるけど >それで >「零因子行列のことだろ? 知っているよ」 >と切り返したら おそらく逆行列INV(A)について INV(A)=ADJ(A)/det(A) という余因子ADJ(A)を使った公式だけ知ってて 逆行列がない場合は、行列式det(A)が0の場合だから A ADJ(A) = OとなりAが零因子だといいたいんだろうけど そもそも行列式が0の方が根本なのに そこすっ飛ばす時点で線形代数が全然わかってない と言われてもしゃあない http://rio2016.5ch.net/test/read.cgi/math/1677671318/891
976: 132人目の素数さん [sage] 2023/04/08(土) 20:56:23.56 ID:v/j/XuPX 時枝先生じゃなくても学部文系一般に鼻で笑われる阪大工学部。 お笑い種である。 http://rio2016.5ch.net/test/read.cgi/math/1677671318/976
989: 132人目の素数さん [] 2023/04/09(日) 11:44:23.56 ID:QDGuRhc1 >>987 数学で芸術的な完成度にこだわるのは くだらないという立場? http://rio2016.5ch.net/test/read.cgi/math/1677671318/989
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s