[過去ログ] スレタイ 箱入り無数目を語る部屋7 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
581
(4): 2023/06/09(金)14:18 ID:05Hzdd8B(2/3) AAS
>>579 追加
Lemmma 4:箱に区間[0,1]の一様分布の実数を箱に入れるとする(つまりp=0)(>>498ご参照)
1)有限長さn個の箱の数列で、決定番号の確率分布は、d=nが1 それ以外 つまり d=1~n-1では0
2)無限長さn→∞を考えると、決定番号の確率分布は、d=1~∞ で0 但し 非正則分布を成す>>302
証明
1)Lemmma 3で、p=0と置けば良い
2)上記1)で、n→∞を考えれば良い
省2
582
(1): 2023/06/09(金)16:37 ID:8lnCKcfu(6/8) AAS
>>581
出題列が0,0,・・・,0のときあなたは決定番号の組=(1,1,・・・,1)と言った。
(1,1,・・・,1)は非正規分布ではありません。分布ですらない。定数です。
では決定番号の組が非正規分布になるような出題列を1例でよいので示してください。
示せなければ持論が間違っていたことを認めたと認定しますので気合いを入れて示して下さいね。
587: 2023/06/09(金)20:03 ID:2NmqfWIr(6/7) AAS
>>581
> 無限長さn→∞を考えると、決定番号の確率分布は、d=1~;∞ で0
 はい、完全な誤り

もし、任意の自然数nで確率0だとすると、
 可算加法性から全体の確率が0になる
 しかしそれは矛盾である
 したがって、任意の自然数nで確率0、とはいえない
省7
596
(5): 2023/06/10(土)09:13 ID:9OKzQGab(4/11) AAS
>>581

さて、命題を追加します
命題4:
i)有限だが十分長い長さn個の箱の数列で、一つの箱の一致確率をpとする(0<= p <=1(IIDを仮定する))
 2列XとYで考える
 列Xの箱を全て開けて、決定番号dXを得る
 列Yの箱でdX+1番目までのしっぽを開け、決定番号dYを得る
省20
603
(4): 2023/06/10(土)15:26 ID:9OKzQGab(8/11) AAS
>>581
> (非正則分布を成す>>302のところは、>>302の非正則分布をご参照ください。(”全事象の確率は1であるというコルモゴロフの確率の公理に反しています”(自然数の集合Nに類似)))

非正則分布について補足します(常識ですがw)
1)まず、ガウス分布(正規分布とも)は、減衰の早い分布です(2重指数的減衰)
2)一方、裾の重い分布があります(代表例 コーシー分布)(関数1/xに近い減衰)
3)さて、常識ですが広義積分1/x(1→∞)は発散します(しかし、1/x^λ λ>1 ならば発散しません。λが1に近いとき”裾の重い分布”)
4)では、一様分布はどうか? x=a(定数)で減衰しません!!
省13
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s