[過去ログ]
スレタイ 箱入り無数目を語る部屋7 (1002レス)
スレタイ 箱入り無数目を語る部屋7 http://rio2016.5ch.net/test/read.cgi/math/1674744315/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
603: 132人目の素数さん [] 2023/06/10(土) 15:26:29.74 ID:9OKzQGab >>581 > (非正則分布を成す>>302のところは、>>302の非正則分布をご参照ください。(”全事象の確率は1であるというコルモゴロフの確率の公理に反しています”(自然数の集合Nに類似))) 非正則分布について補足します(常識ですがw) 1)まず、ガウス分布(正規分布とも)は、減衰の早い分布です(2重指数的減衰) 2)一方、裾の重い分布があります(代表例 コーシー分布)(関数1/xに近い減衰) 3)さて、常識ですが広義積分1/x(1→∞)は発散します(しかし、1/x^λ λ>1 ならば発散しません。λが1に近いとき”裾の重い分布”) 4)では、一様分布はどうか? x=a(定数)で減衰しません!! 当然、広義積分(1→∞)は発散します! これが、>>302の非正則分布の説明です 5)では、時枝の決定番号の分布はどうか? >>579の通り減衰しません 0<p<1の場合、減衰どころか箱の番号が大きくなると増大します 当然、広義積分(1→∞)(いまの場合離散量なので総和)は、∞に発散します!w (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E8%A6%8F%E5%88%86%E5%B8%83 正規分布(normal distribution)またはガウス分布(Gaussian distribution) 概要 平均を μ, 分散を σ^2 > 0 とする(1次元)正規分布とは、確率密度関数が次の形(ガウス関数と呼ばれる) f(x)=1/√(2πσ^2) *exp(-(x-μ)^2/(2σ^2)) x∈R つづく http://rio2016.5ch.net/test/read.cgi/math/1674744315/603
604: 132人目の素数さん [] 2023/06/10(土) 15:26:51.55 ID:9OKzQGab >>603 つづき https://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E9%96%A2%E6%95%B0%E7%9A%84%E6%B8%9B%E8%A1%B0 指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰[1] http://nalab.mind.meiji.ac.jp/~mk/lecture/ouyoukaiseki4/notebook/numerical-integration/numerical-integration.html 数値積分 桂田 祐史 2016年3月13日 2.9 2重指数関数型公式 http://nalab.mind.meiji.ac.jp/~mk/lecture/ouyoukaiseki4/notebook/numerical-integration/node30.html 2.9.2.2 R上の減衰の緩い関数の積分 https://ja.wikipedia.org/wiki/%E8%A3%BE%E3%81%AE%E9%87%8D%E3%81%84%E5%88%86%E5%B8%83 裾の重い分布 https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%86%E5%B8%83 コーシー分布 https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13228126168 広義積分1/x(1→∞)が発散するのは何故ですか? - Yahoo!知恵袋 2020/07/09 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1674744315/604
605: 132人目の素数さん [] 2023/06/10(土) 15:31:37.49 ID:inioCPA8 >>603 >非正則分布について補足します 決定番号の組が非正則分布になるような出題列をただの1例も示せなかったので補足はまったくの無駄ですね http://rio2016.5ch.net/test/read.cgi/math/1674744315/605
606: 132人目の素数さん [] 2023/06/10(土) 16:13:46.09 ID:0hpKfCNS >>603 箱の数をaleph1個(最小の非可算無限個)にすれば 非正則分布をなくせる 列の数はaleph0(可算無限個)にできるので 外れ列を選ぶ確率はいくらでも小さくできる これも0にしたいなら 列の数をaleph1個とすればよく 箱の数をaleph2個とすればいい ID:9OKzQGab 今ここに死す http://rio2016.5ch.net/test/read.cgi/math/1674744315/606
609: 132人目の素数さん [] 2023/06/10(土) 22:55:37.50 ID:9OKzQGab >>603 さらに補足 (場合の数で補足説明) 1)まず>>302の自然数Nの一様分布類似から ・有限nの場合:1~nで当りくじ1が1枚、外れn-1枚、全事象Ω={1~n}となる ・無限集合Nの場合:1~n→∞で当りくじ1が1枚、外れは無限枚、全事象Ω={1~n→∞} (全事象が発散し非正則分布を成す) 2)決定番号について ・有限n個の箱の場合: (サイコロの目1~6を一般化して、1~Pの整数を等確率で箱に入れる。確率p=1/Pとする) 場合の数は、全部でP^(n-1)、決定番号がm以下(1<= m <=n)となる場合の数はP^(m-1) (>>579なども、ご参照ください) ・ここでご注目は、決定番号の場合の数は減衰しないこと。減衰どころか増大しているのです ・無限集合Nの場合:1~n→∞で、減衰どころか増大しているので 全事象Ωも発散して非正則分布を成します! http://rio2016.5ch.net/test/read.cgi/math/1674744315/609
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s