[過去ログ]
スレタイ 箱入り無数目を語る部屋7 (1002レス)
スレタイ 箱入り無数目を語る部屋7 http://rio2016.5ch.net/test/read.cgi/math/1674744315/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
356: 132人目の素数さん [] 2023/05/14(日) 18:02:30.21 ID:CibViSTy >>355 有限単独では無意味だよ >>354より 1)箱が有限個の列の場合 2)箱が可算無限個の列の場合(時枝記事) 3)箱をアレフ2個にする場合(上記) 上記3つの場合で、1)と2)の比較に意味があるよ つまり、1)と2)の比較で 1)箱が有限個の列の場合は、確率99/100は得られない 一方 2)箱が可算無限個の列の場合(時枝記事)で、確率99/100が得られるという この差は、列の長さの違いで生じる つまり、1)では 決定番号の標本空間Ω(全事象)は、有限集合 2)では 決定番号の標本空間Ω(全事象)は、可算無限集合>>344 だ 問題は、2)では 決定番号の標本空間Ω(全事象) 可算無限集合 の場合は、Ω→∞なので この場合、非正則分布になる(>>302 ご参照) ってこと 非正則分布では、積分値又は総和が無限大に発散している この場合、全事象の確率は1であるというコルモゴロフの確率の公理に反している コルモゴロフの確率の公理に反しているということは いろいろ矛盾が出てくるってことだ! さらに言えば、無造作な確率計算は御法度ですよ!!w(>>333より) (>>344より) http://rio2016.5ch.net/test/read.cgi/math/1674744315/356
357: 132人目の素数さん [] 2023/05/14(日) 18:34:25.85 ID:cQycsgFE >>356 確率変数についての認識が間違ってるので何を言っても無意味 基本中の基本が分かってない http://rio2016.5ch.net/test/read.cgi/math/1674744315/357
358: 132人目の素数さん [sage] 2023/05/14(日) 18:44:51.13 ID:/LpWMK1t 箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の n→∞ という極限で得られるわけではないよね。 有限個の場合の極限になっていないんだから、>>356の話は無意味だな。 http://rio2016.5ch.net/test/read.cgi/math/1674744315/358
359: 132人目の素数さん [] 2023/05/14(日) 19:55:55.02 ID:CibViSTy >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな。 1)「n→∞ という極限で得られるわけではないよね」か うん、それで結構だよ 2)n→∞という極限であっても そうで無くてもね 3)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな? 4)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) ここまでは、良いかな? 5)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している ここまでは、良いかな? 6)ここまで来たら 結論は見えているだろう? http://rio2016.5ch.net/test/read.cgi/math/1674744315/359
362: 132人目の素数さん [] 2023/05/14(日) 22:40:28.69 ID:CibViSTy 繰り返すw >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな。 1)「n→∞ という極限で得られるわけではないよね」か うん、それで結構だよ 2)n→∞という極限であっても そうで無くてもね 3)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな? 4)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) ここまでは、良いかな? 5)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している ここまでは、良いかな? 6)ここまで来たら 結論は見えているだろう? http://rio2016.5ch.net/test/read.cgi/math/1674744315/362
374: 132人目の素数さん [] 2023/05/15(月) 13:21:32.39 ID:vXN+/ajo >>356 >1)箱が有限個の列の場合は、確率99/100は得られない なんでダメか、正確にその理由を答えてみ 答えられたら、なぜ無限個だと 上手く行かざるを得ないか 嫌でも分かるはずだから まぁ、頑張って http://rio2016.5ch.net/test/read.cgi/math/1674744315/374
389: 132人目の素数さん [] 2023/05/19(金) 17:03:08.81 ID:JFpC5B37 繰り返す その1 >>366 >どの列を選んでも勝つ確率0ってこと? >それっておかしくないですか? ありがとう。そういう論法ならば 1)まず、時枝記事>>1(数学セミナー201511月号) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2)それっておかしくないですか? ・箱を開けずに、箱の中の数を当てるとは? 例:仮にサイコロの目1~6を入れたとして的中確率1/6ですが、箱を開けずに的中確率99/100に出来るのか ・箱にいま、区間[0,1]の実数rを入れたとする コルモゴロフの測度論による確率では、実数rはただ1点だから的中確率0になるところ、的中確率99/100になるのはおかしくないですか ・上記で、区間[0,1]→区間[-∞,+∞]とできて 任意の実数rを入れて良いと時枝さん 当然的中確率0になるところだが、的中確率99/100になるのはおかしくないですか その2 >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな 1)「n→∞ という極限で得られるわけではないよね」 うん、それで結構だよ 2)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな 3)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) 4)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している 5)ここまで来たら 結論は見えているだろう http://rio2016.5ch.net/test/read.cgi/math/1674744315/389
401: 132人目の素数さん [] 2023/05/21(日) 20:53:20.66 ID:bq+56Klo 繰り返す その1 >>366 >どの列を選んでも勝つ確率0ってこと? >それっておかしくないですか? ありがとう。そういう論法ならば 1)まず、時枝記事>>1(数学セミナー201511月号) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2)それっておかしくないですか? ・箱を開けずに、箱の中の数を当てるとは? 例:仮にサイコロの目1~6を入れたとして的中確率1/6ですが、箱を開けずに的中確率99/100に出来るのか ・箱にいま、区間[0,1]の実数rを入れたとする コルモゴロフの測度論による確率では、実数rはただ1点だから的中確率0になるところ、的中確率99/100になるのはおかしくないですか ・上記で、区間[0,1]→区間[-∞,+∞]とできて 任意の実数rを入れて良いと時枝さん 当然的中確率0になるところだが、的中確率99/100になるのはおかしくないですか その2 >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな 1)「n→∞ という極限で得られるわけではないよね」 うん、それで結構だよ 2)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな 3)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) 4)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している 5)ここまで来たら 結論は見えているだろう http://rio2016.5ch.net/test/read.cgi/math/1674744315/401
407: 132人目の素数さん [] 2023/05/22(月) 10:25:44.57 ID:GU3MIcVP 繰り返す その1 >>366 >どの列を選んでも勝つ確率0ってこと? >それっておかしくないですか? ありがとう。そういう論法ならば 1)まず、時枝記事>>1(数学セミナー201511月号) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2)それっておかしくないですか? ・箱を開けずに、箱の中の数を当てるとは? 例:仮にサイコロの目1~6を入れたとして的中確率1/6ですが、箱を開けずに的中確率99/100に出来るのか ・箱にいま、区間[0,1]の実数rを入れたとする コルモゴロフの測度論による確率では、実数rはただ1点だから的中確率0になるところ、的中確率99/100になるのはおかしくないですか ・上記で、区間[0,1]→区間[-∞,+∞]とできて 任意の実数rを入れて良いと時枝さん 当然的中確率0になるところだが、的中確率99/100になるのはおかしくないですか その2 >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな 1)「n→∞ という極限で得られるわけではないよね」 うん、それで結構だよ 2)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな 3)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) 4)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している 5)ここまで来たら 結論は見えているだろう http://rio2016.5ch.net/test/read.cgi/math/1674744315/407
452: 132人目の素数さん [] 2023/05/27(土) 18:41:05.28 ID:DPZnsDDB 繰り返す その1 >>366 >どの列を選んでも勝つ確率0ってこと? >それっておかしくないですか? ありがとう。そういう論法ならば 1)まず、時枝記事>>1(数学セミナー201511月号) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2)それっておかしくないですか? ・箱を開けずに、箱の中の数を当てるとは? 例:仮にサイコロの目1~6を入れたとして的中確率1/6ですが、箱を開けずに的中確率99/100に出来るのか ・箱にいま、区間[0,1]の実数rを入れたとする コルモゴロフの測度論による確率では、実数rはただ1点だから的中確率0になるところ、的中確率99/100になるのはおかしくないですか ・上記で、区間[0,1]→区間[-∞,+∞]とできて 任意の実数rを入れて良いと時枝さん 当然的中確率0になるところだが、的中確率99/100になるのはおかしくないですか その2 >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな 1)「n→∞ という極限で得られるわけではないよね」 うん、それで結構だよ 2)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな 3)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) 4)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している 5)ここまで来たら 結論は見えているだろう http://rio2016.5ch.net/test/read.cgi/math/1674744315/452
459: 132人目の素数さん [] 2023/05/27(土) 22:00:02.19 ID:DPZnsDDB 繰り返す その1 >>366 >どの列を選んでも勝つ確率0ってこと? >それっておかしくないですか? ありがとう。そういう論法ならば 1)まず、時枝記事>>1(数学セミナー201511月号) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2)それっておかしくないですか? ・箱を開けずに、箱の中の数を当てるとは? 例:仮にサイコロの目1~6を入れたとして的中確率1/6ですが、箱を開けずに的中確率99/100に出来るのか ・箱にいま、区間[0,1]の実数rを入れたとする コルモゴロフの測度論による確率では、実数rはただ1点だから的中確率0になるところ、的中確率99/100になるのはおかしくないですか ・上記で、区間[0,1]→区間[-∞,+∞]とできて 任意の実数rを入れて良いと時枝さん 当然的中確率0になるところだが、的中確率99/100になるのはおかしくないですか その2 >>358 >箱入り無数目の方法というのは、「箱の個数が有限個n」とした場合の >n→∞ という極限で得られるわけではないよね。 >有限個の場合の極限になっていないんだから、>>356の話は無意味だな 1)「n→∞ という極限で得られるわけではないよね」 うん、それで結構だよ 2)列の箱の個数が可算無限個のとき、決定番号は自然数全体を渡る ここは良いかな 3)とすると、決定番号の集合で標本空間Ω(全事象)は 非正則分布になる(>>302 ご参照) 4)そして、非正則分布の場合 積分値又は総和が無限大に発散して、確率の和が1ではない だから、全事象の確率は1であるというコルモゴロフの確率の公理に反している 5)ここまで来たら 結論は見えているだろう http://rio2016.5ch.net/test/read.cgi/math/1674744315/459
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.049s