[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
776
(7): 2023/07/28(金)11:19 ID:GoaFG8py(2/7) AAS
>>732
>求める未知数の級数展開の係数は可算無限で、つまり無限次元の連立方程式を解けば、級数展開の係数が決まり
>(無限次元の連立方程式が、実際に解けるかは別として、原理的には解ける)

全くの蛇足だが、下記のPolynomial interpolationのn次元→無限次元 にできる
つまり
f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・ で
x1,x2,・・,xi-2,xi-1,xi,xi+1,xi+2,・・として
省7
781: 2023/07/28(金)12:12 ID:zikikevF(12/32) AAS
>>776
>f(x)が解析関数という仮定が不成立なら、未知のf(c)が的中できるかどうか不明ってことです
cを固定したらダメ
君やはりぜんぜん分かってないね
782: 2023/07/28(金)12:14 ID:zikikevF(13/32) AAS
>>776
「どの箱を閉じたまま残すかはあなたが決めうる.」
君やはり日本語読めないようだね
数学以前だね
783
(1): 2023/07/28(金)12:47 ID:zikikevF(14/32) AAS
>>776
だから言ってるじゃん
>>724に正答できないようじゃ箱入り無数目なんて絶対無理だと
箱入り無数目を理解したかったらまずは>>724に正答できるだけの基礎学力が必要
827: 2023/07/29(土)09:57 ID:sfQsqQVE(6/26) AAS
>>819
>ジブリ作品の中ではこれが一番よくできている

ジブリ談義に割り込んで恐縮ですが
「箱入り無数目」で、1変数解析関数f(x)を使って
 >>732>>776のように
箱の外には、可算無限の x1,x2,・・ たちを明記sておく
そうすれば、級数展開 f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・
省6
906
(1): 2023/07/30(日)10:03 ID:2UJHJvqn(3/7) AAS
>>>883
>>ここは、>>732-733に説明した通り
>>736で論破済み 日本語読めませんか?

ダメをつめますw
(引用開始)>>736
>解析関数以外では、区間[a,b]内の可算無限個の関数値が分かっても関数は決まらないので
関数は決まってるよ
省28
914
(1): 2023/07/30(日)11:14 ID:/58NXHqj(1) AAS
>>776
xi-1はx(i-1)なのか(xi)-1なのか
915: 2023/07/30(日)11:28 ID:2UJHJvqn(4/7) AAS
>>914
ありがとうございます
スレ主です

>>>776
>xi-1はx(i-1)なのか(xi)-1なのか

x(i-1)です
添え字 i-1です
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.045s