[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
906
(1): 2023/07/30(日)10:03 ID:2UJHJvqn(3/7) AAS
>>>883
>>ここは、>>732-733に説明した通り
>>736で論破済み 日本語読めませんか?

ダメをつめますw
(引用開始)>>736
>解析関数以外では、区間[a,b]内の可算無限個の関数値が分かっても関数は決まらないので
関数は決まってるよ
決まってなければ箱に関数値を入れられない
はい、サル知恵
(引用終り)

これを説明せにゃならんとは
数学科出身者に対してね、やれやれ

1)区間[a,b]内の解析関数ならば、>>776に示したように あるc a<c<b で
 級数展開 f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・ とできて
 可算無限個の関数値から、係数のa0,a1,a2・・が決まるので
 関数は決まる
2)しかし、解析関数という仮定がなければ
 区間[a,b]内の可算無限個の関数値だけでは
 関数は一意には決まらない
3)「箱入り無数目」に即して言えば
 ある出題者が、乱数発生器で、可算無限個の箱に乱数を入れた
 一つを残して、他の箱を開けて、残った一つをピタリと当てよという
 乱数理論からすれば、真の乱数ならば、当てられない!
 一方、「箱入り無数目」は当てられるという
 これまさに、中国の盾と矛の故事のごとし
 当然、現代数学の乱数理論の勝ち
 時枝「箱入り無数目」の負けです
 それが、現代数学の結論!w

(参考)
外部リンク:ja.wikipedia.org
乱数列(らんすうれつ)とはランダムな数列のこと。 数学的に述べれば、今得られている数列
x_{1},x_{2},・・,x_{n} から次の数列の値
x_{n+1} が予測できない数列。乱数列の各要素を乱数(らんすう)という。
外部リンク[pdf]:mathsoc.jp
確率と乱数 杉田洋(大阪大学大学院理学研究科) 日本数学会年会市民講演会(2013年3月24日)
1-
あと 96 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.012s